cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347558 Number of minimum dominating sets in the n-ladder graph.

Original entry on oeis.org

2, 6, 3, 12, 2, 17, 2, 20, 2, 24, 2, 28, 2, 32, 2, 36, 2, 40, 2, 44, 2, 48, 2, 52, 2, 56, 2, 60, 2, 64, 2, 68, 2, 72, 2, 76, 2, 80, 2, 84, 2, 88, 2, 92, 2, 96, 2, 100, 2, 104, 2, 108, 2, 112, 2, 116, 2, 120, 2, 124, 2, 128, 2, 132, 2, 136, 2, 140, 2, 144, 2
Offset: 1

Views

Author

Eric W. Weisstein, Sep 06 2021

Keywords

Crossrefs

Row 2 of A350820.
Cf. A347634.

Programs

  • Mathematica
    Join[{2, 6, 3, 12, 2, 17}, LinearRecurrence[{0, 2, 0, -1}, {2, 20, 2, 24}, 20]]
    CoefficientList[Series[(2 + 6 x - x^2 - 2 x^4 - x^5 + x^6 - 2 x^7 + x^9)/((-1 + x)^2 (1 + x)^2), {x, 0, 20}], x]
  • PARI
    a(n)={if(n%2, 1, n+2)*2 + if(n<=6, [0,-2,1,0,0,1][n])} \\ Andrew Howroyd, Jan 18 2022

Formula

a(n) = 2*(n+2) for mod(n, 2)=0 and n != 2,6.
a(n) = 2 for mod(n, 2)=1 and n != 3.
a(n) = 2*a(n-2)-a(n-4) for n > 6.
G.f.: x*(2 + 6*x - x^2 - 2*x^4 - x^5 + x^6 - 2*x^7 + x^9)/((-1 + x)^2*(1 + x)^2).

A375566 Array read by antidiagonals: T(m,n) = number of minimum dominating sets in the stacked prism graph C_m X P_n.

Original entry on oeis.org

1, 2, 2, 1, 6, 3, 4, 3, 9, 6, 3, 12, 34, 4, 5, 1, 2, 123, 4, 10, 3, 8, 17, 3, 16, 5, 51, 14, 4, 2, 18, 28, 290, 18, 14, 8, 1, 20, 93, 76, 320, 6, 63, 4, 3, 13, 2, 438, 164, 265, 171, 14, 4, 18, 25, 5, 24, 3, 396, 255, 36, 91, 24, 9, 120, 11, 1, 2, 27, 904, 250, 6, 1526, 60, 2052, 25, 22, 3
Offset: 1

Views

Author

Stephan Mertens, Aug 19 2024

Keywords

Examples

			Table starts:
====================================
m\n |   1   2   3    4    5    6 ...
----+-------------------------------
  1 |   1   2   1    4    3    1 ...
  2 |   2   6   3   12    2   17 ...
  3 |   3   9  34  123    3   18 ...
  4 |   6   4   4   16   28   76 ...
  5 |   5  10   5  290  320  265 ...
 ...
		

Crossrefs

Main diagonal is A375569.
Rows 1..2 are A347633, A347558.
Column 1 is A347538, column 2 is essentially A347634.
Showing 1-2 of 2 results.