cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347668 Indices of records in A347409.

Original entry on oeis.org

1, 2, 3, 15, 21, 75, 151, 1365, 5461, 7407, 14563, 87381, 184111, 932067, 5592405, 13256071, 26512143, 357913941, 1431655765, 3817748707, 22906492245, 91625968981, 244335917283, 1466015503701, 5212499568715, 10424999137431, 93824992236885
Offset: 1

Views

Author

Paolo Xausa, Sep 10 2021

Keywords

Comments

Conjecture 1: A347409(a(n)) is even for n >= 11. Conjecture 2: all even numbers > 2 appear as A347409(a(n)) for some n. - Chai Wah Wu, Sep 29 2021
If conjectures 1 and 2 are true, then A347409(a(n)) = 2n - 6 for n >= 11, and hence a(n) <= (4^(n-3)-1)/3 for n >= 11 since A347409((4^(n-3)-1)/3) = 2n - 6. - Charles R Greathouse IV, Oct 25 2022

Crossrefs

Programs

  • Mathematica
    A347409[n_]:=(c=n;sm=0;While[c>1,If[OddQ[c],c=3c+1,If[(s=IntegerExponent[c,2])>sm,sm=s];c/=2^s]];sm)
    upto=100000;a={};rec=-1;Do[If[(r=A347409[i])>rec,rec=r;AppendTo[a,i]],{i,upto}];a
  • PARI
    f(n)=my(nb=0); while (n != 1, if (n % 2, n=3*n+1, my(x = valuation(n, 2)); n /= 2^x; nb = max(nb, x)); ); nb; \\ A347409
    lista(nn) = my(r=-1, m); for (n=1, nn, if ((m=f(n)) > r, print1(n, ", "); r = m);); \\ Michel Marcus, Sep 10 2021

Extensions

a(15) from Michel Marcus, Sep 10 2021
a(16)-a(17) from Alois P. Heinz, Sep 10 2021
a(18)-a(20) from Michael S. Branicky, Sep 28 2021
a(21)-a(22) from Michael S. Branicky, Sep 30 2021
a(23) from Michael S. Branicky, Oct 04 2021
a(24)-a(27) from Kevin P. Thompson, Apr 14 2022