A347702 Prime numbers that give a remainder of 1 when divided by the sum of their digits.
11, 13, 17, 41, 43, 97, 101, 131, 157, 181, 233, 239, 271, 311, 353, 401, 421, 491, 521, 541, 599, 617, 631, 647, 673, 743, 811, 859, 953, 1021, 1031, 1051, 1093, 1171, 1201, 1249, 1259, 1301, 1303, 1327, 1373, 1531, 1601, 1621, 1801, 1871, 2029, 2111, 2129, 2161
Offset: 1
Examples
97 is a term since its sum of digits is 9+7 = 16, and 97 mod 16 = 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
select(t -> isprime(t) and t mod convert(convert(t,base,10),`+`) = 1, [seq(i,i=3..10000,2)]); # Robert Israel, Mar 05 2024
-
Mathematica
Select[Range[2000], PrimeQ[#] && Mod[#, Plus @@ IntegerDigits[#]] == 1 &] (* Amiram Eldar, Sep 10 2021 *)
-
PARI
isok(p) = isprime(p) && ((p % sumdigits(p)) == 1); \\ Michel Marcus, Sep 10 2021
-
Python
from sympy import primerange def ok(p): return p%sum(map(int, str(p))) == 1 print(list(filter(ok, primerange(1, 2130)))) # Michael S. Branicky, Sep 10 2021