cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347815 Prime numbers p such that both 30 and 105 are quadratic nonresidue (mod p).

Original entry on oeis.org

11, 31, 43, 47, 61, 67, 163, 167, 173, 179, 181, 193, 199, 229, 271, 281, 293, 337, 349, 383, 401, 439, 449, 457, 491, 503, 547, 569, 641, 647, 659, 661, 673, 677, 773, 797, 809, 829, 883, 887, 907, 983, 1013, 1019, 1021, 1033, 1039, 1069, 1223, 1231
Offset: 1

Views

Author

Sela Fried, Sep 15 2021

Keywords

Comments

Primes p such that the Eulerian polynomial E_5(x) is irreducible (mod p), where E_5(x) = x^4 + 26x^3 + 66x^2 + 26x + 1.
The sequence is infinite.

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range[205], JacobiSymbol[30, #] == -1 && JacobiSymbol[105,#]==-1 &] (* Stefano Spezia, Sep 16 2021 *)
  • PARI
    isok(p) = isprime(p) && (kronecker(30, p)==-1) && (kronecker(105, p)==-1); \\ Michel Marcus, Sep 16 2021
    
  • Python
    from sympy.ntheory import legendre_symbol, primerange
    A347815_list = [p for p in primerange(3,10**5) if legendre_symbol(30,p) == legendre_symbol(105,p) == -1] # Chai Wah Wu, Sep 16 2021