A347815 Prime numbers p such that both 30 and 105 are quadratic nonresidue (mod p).
11, 31, 43, 47, 61, 67, 163, 167, 173, 179, 181, 193, 199, 229, 271, 281, 293, 337, 349, 383, 401, 439, 449, 457, 491, 503, 547, 569, 641, 647, 659, 661, 673, 677, 773, 797, 809, 829, 883, 887, 907, 983, 1013, 1019, 1021, 1033, 1039, 1069, 1223, 1231
Offset: 1
Keywords
Links
- A. J. J. Heidrich, On the factorization of Eulerian polynomials, Journal of Number Theory, 18(2):157-168, 1984.
Programs
-
Mathematica
Select[Prime@Range[205], JacobiSymbol[30, #] == -1 && JacobiSymbol[105,#]==-1 &] (* Stefano Spezia, Sep 16 2021 *)
-
PARI
isok(p) = isprime(p) && (kronecker(30, p)==-1) && (kronecker(105, p)==-1); \\ Michel Marcus, Sep 16 2021
-
Python
from sympy.ntheory import legendre_symbol, primerange A347815_list = [p for p in primerange(3,10**5) if legendre_symbol(30,p) == legendre_symbol(105,p) == -1] # Chai Wah Wu, Sep 16 2021
Comments