cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A327564 If n = Product (p_j^k_j) then a(n) = Product ((p_j + 1)^(k_j - 1)).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 9, 4, 1, 1, 3, 1, 1, 1, 27, 1, 4, 1, 3, 1, 1, 1, 9, 6, 1, 16, 3, 1, 1, 1, 81, 1, 1, 1, 12, 1, 1, 1, 9, 1, 1, 1, 3, 4, 1, 1, 27, 8, 6, 1, 3, 1, 16, 1, 9, 1, 1, 1, 3, 1, 1, 4, 243, 1, 1, 1, 3, 1, 1, 1, 36, 1, 1, 6, 3, 1, 1, 1, 27, 64, 1, 1, 3, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 03 2020

Keywords

Examples

			a(12) = a(2^2 * 3) = (2 + 1)^(2 - 1) * (3 + 1)^(1 - 1) = 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ ((#[[1]] + 1)^(#[[2]] - 1) & /@ FactorInteger[n]); Table[a[n], {n, 1, 85}]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1]++; f[k,2]--); factorback(f); \\ Michel Marcus, Mar 03 2020

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA001221(n/d) * A003557(n/d) * a(d).
a(n) = A003959(n) / A048250(n) = A003968(n) / A007947(n).
a(n) = A348038(n) * A348039(n) = A340368(n) / A173557(n). - Antti Karttunen, Oct 29 2021
Dirichlet g.f.: 1/(zeta(s-1) * Product_{p prime} (1 - 1/p^(s-1) - 1/p^s)). - Amiram Eldar, Dec 07 2023

A348036 a(n) = gcd(n, A003968(n)), where A003968 is multiplicative with a(p^e) = p*(p+1)^(e-1).

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 36, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 2, 65, 66, 67, 34, 69, 70, 71, 72, 73, 74, 15, 38, 77, 78, 79, 10, 3, 82, 83, 42
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2021

Keywords

Crossrefs

Differs from A007947 at the positions given by A347960.

Programs

  • Mathematica
    f[p_, e_] := p*(p + 1)^(e - 1); a[n_] := GCD[n, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Oct 20 2021 *)
  • PARI
    A003968(n) = { my(f=factor(n)); for (i=1, #f~, p= f[i, 1]; f[i, 1] = p*(p+1)^(f[i, 2]-1); f[i, 2] = 1); factorback(f); }
    A348036(n) = gcd(n, A003968(n));

Formula

a(n) = gcd(n, A003968(n)).
a(n) = gcd(n, A348030(n)) = gcd(A003968(n), A348030(n)).
a(n) = n / A348037(n) = A003968(n) / A348038(n).
a(n) = A007947(n) * A348039(n).

A348037 a(n) = n / gcd(n, A003968(n)), where A003968 is multiplicative with a(p^e) = p*(p+1)^(e-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 8, 1, 3, 1, 2, 1, 1, 1, 4, 5, 1, 9, 2, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 8, 7, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 2, 1, 1, 3, 32, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 8, 27, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 16, 1, 7, 3, 5, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2021

Keywords

Crossrefs

Differs from A003557 at the positions given by A347960.
Cf. A003959, A003968, A333634, A348038, A348039, A348499 (positions of 1's).

Programs

  • Mathematica
    f[p_, e_] := p*(p + 1)^(e - 1); a[n_] := n / GCD[n, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Oct 20 2021 *)
  • PARI
    A003968(n) = { my(f=factor(n)); for (i=1, #f~, p= f[i, 1]; f[i, 1] = p*(p+1)^(f[i, 2]-1); f[i, 2] = 1); factorback(f); }
    A348037(n) = (n/gcd(n, A003968(n)));

Formula

a(n) = n / A348036(n) = n / gcd(n, A003968(n)).
a(n) = A003557(n) / A348039(n).

A348038 a(n) = A003968(n) / gcd(n, A003968(n)), where A003968 is multiplicative with a(p^e) = p*(p+1)^(e-1).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 9, 4, 1, 1, 3, 1, 1, 1, 27, 1, 4, 1, 3, 1, 1, 1, 9, 6, 1, 16, 3, 1, 1, 1, 81, 1, 1, 1, 2, 1, 1, 1, 9, 1, 1, 1, 3, 4, 1, 1, 27, 8, 6, 1, 3, 1, 16, 1, 9, 1, 1, 1, 3, 1, 1, 4, 243, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 6, 3, 1, 1, 1, 27, 64, 1, 1, 3, 1, 1, 1, 9, 1, 4, 1, 3, 1, 1, 1, 81, 1, 8, 4, 9, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 20 2021

Keywords

Crossrefs

Differs from A327564 at the positions given by A347960.
Cf. A003968, A005117 (positions of 1's), A327564, A348036, A348037, A348039.

Programs

  • Mathematica
    f[p_, e_] := p*(p + 1)^(e - 1); a[n_] := (m = Times @@ f @@@ FactorInteger[n]) / GCD[n, m]; Array[a, 100] (* Amiram Eldar, Oct 20 2021 *)
  • PARI
    A003968(n) = {my(f=factor(n)); for (i=1, #f~, p= f[i, 1]; f[i, 1] = p*(p+1)^(f[i, 2]-1); f[i, 2] = 1); factorback(f); }
    A348038(n) = { my(u=A003968(n)); (u/gcd(n, u)); };

Formula

a(n) = A003968(n) / A348036(n) = A003968(n) / gcd(n, A003968(n)).
a(n) = A327564(n) / A348039(n).

A348039 a(n) = gcd(A003557(n), A327564(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2021

Keywords

Comments

There is interesting regularity in the scatter plot.

Crossrefs

Cf. A347960 (positions of terms > 1).

Programs

  • Mathematica
    {1}~Join~Array[GCD @@ Map[Times @@ # &, Transpose@ Map[{#1^(#2 - 1), (#1 + 1)^(#2 - 1)} & @@ # &, FactorInteger[#]]] &, 105, 2] (* Michael De Vlieger, Oct 20 2021 *)
  • PARI
    A003968(n) = {my(f=factor(n)); for (i=1, #f~, p= f[i, 1]; f[i, 1] = p*(p+1)^(f[i, 2]-1); f[i, 2] = 1); factorback(f); }
    A007947(n) = factorback(factorint(n)[, 1]);
    A348036(n) = gcd(n, A003968(n));
    A348039(n) = (A348036(n)/A007947(n));
    
  • PARI
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A327564(n) = { my(f=factor(n)); for(k=1, #f~, f[k, 1]++; f[k, 2]--); factorback(f); }; \\ From A327564
    A348039(n) = gcd(A003557(n), A327564(n));

Formula

a(n) = gcd(A003557(n), A327564(n)).
a(n) = A348036(n) / A007947(n).
a(n) = A003557(n) / A348037(n).
a(n) = A327564(n) / A348038(n).

A348499 Numbers k such that A003968(k) is a multiple of k, where A003968 is multiplicative with a(p^e) = p*(p+1)^(e-1).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2021

Keywords

Comments

This is a subsequence of A333634. See comments in A347892.

Crossrefs

Union of A005117 and A347892 (terms that are not squarefree).
Subsequence of A333634.
Positions of ones in A348037.

Programs

  • Mathematica
    f[p_, e_] := p*(p + 1)^(e - 1); s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[120], Divisible[s[#], #] &] (* Amiram Eldar, Oct 29 2021 *)
  • PARI
    A003968(n) = {my(f=factor(n)); for (i=1, #f~, p= f[i, 1]; f[i, 1] = p*(p+1)^(f[i, 2]-1); f[i, 2] = 1); factorback(f); }
    isA348499(n) = !(A003968(n)%n);

A348169 Positive integers which can be represented as A*(x^2 + y^2 + z^2) = B*(x*y + x*z + y*z) with positive integers x, y, z, A, B and gcd(A,B)=1.

Original entry on oeis.org

3, 12, 18, 27, 30, 42, 48, 72, 75, 77, 98, 108, 120, 147, 154, 162, 168, 192, 243, 255, 260, 264, 270, 272, 273, 285, 288, 297, 300, 308, 338, 363, 378, 392, 432, 450, 462, 480, 490, 494, 507, 510, 513, 588, 616, 630, 648, 672, 675, 693, 702, 714, 722, 750, 754, 768, 798
Offset: 1

Views

Author

Alexander Kritov, Oct 04 2021

Keywords

Comments

The sequence represents a generalization of cases A033428 (k=1), A347960 (k=2), A347969 (k=5) with all possible k given by A331605. Instead of integer k, it utilizes the ratio B/A.

Examples

			a(6)=42: the quintuple (x,y,z) A,B is 1,2,4 (2,3) because 42 = 2*(1^2 + 2^2 + 4^2) = 3*(1*4 + 1*2 + 2*4).
  a(n)    (x,y,z)     A,  B
    3     (1,1,1)     1,  1
   12     (2,2,2)     1,  1
   18     (1,1,4)     1,  2
   27     (3,3,3)     1,  1
   30     (1,1,2)     5,  6
   42     (1,2,4)     2,  3
   48     (4,4,4)     1,  1
   72     (1,2,2)     8,  9  [also (2,2,8) 1, 2]
   75     (5,5,5)     1,  1
   77     (1,1,3)     7, 11
   98     (1,4,9)     1,  2
  108     (6,6,6)     1,  1
  120     (2,2,4)     5,  6
  147     (7,7,7)     1,  1
  154     (1,2,3)    11, 14
  162     (3,3,12)    1,  2
  168     (2,4,8)     2,  3
  192     (8,8,8)     1,  1
  243     (9,9,9)     1,  1
  255     (1,1,7)     5, 17
  260     (2,5,6)     4,  5
  264     (1,4,4)     8, 11
  270     (2,5,5)     5,  6
  272     (2,2,3)    16, 17
  288     (4,4,2)     8,  9  [also (4,4,16) 1, 2]
		

Crossrefs

The sequence contains A033428 (A=B=1), A347969 (B=2*A), A347960 (B=5*A).

Programs

  • C
    /* See links */
    
  • Python
    from itertools import islice, count
    from math import gcd
    from sympy import divisors, integer_nthroot
    def A348169(): # generator of terms
        for n in count(1):
            for d in divisors(n,generator=False):
                x, x2 = 1, 1
                while 3*x2 <= d:
                    y, y2 = x, x2
                    z2 = d-x2-y2
                    while z2 >= y2:
                        z, w = integer_nthroot(z2,2)
                        if w:
                            A = n//d
                            B, u = divmod(n,x*(y+z)+y*z)
                            if u == 0 and gcd(A,B) == 1:
                                yield n
                                break
                        y += 1
                        y2 += 2*y-1
                        z2 -= 2*y-1
                    else:
                        x += 1
                        x2 += 2*x-1
                        continue
                    break
                else:
                    continue
                break
    A348169_list = list(islice(A348169(),57)) # Chai Wah Wu, Nov 26 2021
Showing 1-7 of 7 results.