cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A348622 Triangular array read by rows: T(n,k) is the number of periodic n X n matrices over GF(2) having rank k, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 6, 6, 1, 28, 168, 168, 1, 120, 3360, 20160, 20160, 1, 496, 59520, 1666560, 9999360, 9999360, 1, 2016, 999936, 119992320, 3359784960, 20158709760, 20158709760, 1, 8128, 16386048, 8127479808, 975297576960, 27308332154880, 163849992929280, 163849992929280
Offset: 0

Views

Author

Geoffrey Critzer, Oct 25 2021

Keywords

Comments

A matrix T is periodic if and only image(T) = image(T^2). Cf. A348015.

Examples

			Triangle begins:
  1;
  1,   1;
  1,   6,     6;
  1,  28,   168,     168;
  1, 120,  3360,   20160,   20160;
  1, 496, 59520, 1666560, 9999360, 9999360;
  ...
		

Crossrefs

Cf. A348015 (row sums).
Main diagonal gives A002884.

Programs

  • Maple
    b:= proc(n) option remember; mul(2^n-2^i, i=0..n-1) end:
    T:= (n, k)-> b(n)/b(n-k):
    seq(seq(T(n, k), k=0..n), n=0..8);  # Alois P. Heinz, Oct 30 2021
  • Mathematica
    nn = 7; q = 2; b[p_, i_] := Count[p, i];s[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] := Product[Product[q^(s[p, i] deg) - q^((s[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; \[Nu] = Table[1/n Sum[MoebiusMu[n/m] q^m, {m, Divisors[n]}], {n, 1,nn}]; l[greatestpart_]:=Level[Table[IntegerPartitions[n, {0, n}, Range[greatestpart]], {n, 0, nn}], {2}];
    g1[u_, v_, deg_] :=Total[Map[v^(Length[#]) u^(deg Total[#])/aut[deg, #] &, l[1]]];
    g2[u_, v_, deg_] := Total[Map[v^Length[#] u^(deg Total[#])/aut[deg, #] &,l[nn]]];
    Map[Reverse, Map[Select[#, # > 0 &] &,Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[g1[u, v, 1] g2[u, 1, 1]^(q - 1) Product[g2[u, 1, d]^\[Nu][[d]], {d, 2, nn}], {u, 0, nn}], {u,v}]]] // Flatten

Formula

T(n,k) = A002884(n)/A002884(n-k).
T(n,k) = T(n,k-1)*T(n-k+1,1).
Sum_{n>=0} Sum_{k=0..n} T(n,k)*y^k*x^n/B(n) = e(x)*g(y*x) where e(x) = Sum_{n>=0} x^n/B(n), g(x) = Sum_{n>=0} Product_{i=0..n-1} (q^n-q^i)*x^n/B(n), B(n) = Product_{i=0..n-1} (q^n-q^i)/(q-1)^n and q=2. - Geoffrey Critzer, Jan 03 2025

Extensions

Title improved by Geoffrey Critzer, Sep 16 2022

A358433 Triangular array read by rows. T(n,k) is the number of n X n matrices over GF(2) with index k, n>=1, 1<=k<=n.

Original entry on oeis.org

2, 13, 3, 365, 105, 42, 43801, 12915, 6300, 2520, 21725297, 6412815, 3228960, 1562400, 624960, 43798198753, 12928608063, 6533019360, 3254791680, 1574899200, 629959680, 355991759464385, 105083758588095, 53109556520832, 26576858972160, 13227473387520, 6400390348800, 2560156139520
Offset: 1

Views

Author

Geoffrey Critzer, Nov 15 2022

Keywords

Comments

The index of a matrix A is the smallest positive integer such that rank(A^k) = rank(A^(k+1)).

Examples

			      2,
      13,       3,
     365,     105,      42,
   43801,   12915,    6300,    2520,
21725297, 6412815, 3228960, 1562400, 624960,
		

Crossrefs

Cf. A002416 (row sums), A348015 (column k=1), A083402 (main diagonal for n>1), A346214.

Programs

  • Mathematica
    nn = 6; q = 2; b[p_, i_] := Count[p, i];s[p_, i_] :=  Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] := Product[Product[q^(s[p, i] deg) - q^((s[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; \[Nu] = Table[1/n Sum[MoebiusMu[n/m] q^m, {m, Divisors[n]}], {n, 1, nn}];
    l[greatestpart_] :=Level[Table[IntegerPartitions[n, {0, n}, Range[greatestpart]], {n, 0,nn}], {2}];g1[u_, v_, deg_] := Total[Map[v ^(If[ Max[Prepend[#, 0]] == 0, 1, Max[Prepend[#, 0]]]) u^(deg Total[#])/aut[deg, #] &, l[nn]]]; Map[Select[#, # > 0 &] &,Drop[Table[Product[q^n - q^i, {i, 0, n - 1}], {n,0,nn}]CoefficientList[
      Series[g1[u, v, 1] g1[u, 1, 1]^(q - 1) Product[g1[u, 1, d]^\[Nu][[d]], {d, 2, nn}], {u, 0, nn}], {u, v}], 1]] // Grid

A373784 Number of n X n periodic matrices over GF(3).

Original entry on oeis.org

1, 3, 73, 17083, 36899281, 723299706163, 127954611219059353, 203907700711025670584683, 2925406687944886208690683289761, 377768302929213133608351637048047649123, 439058106335101098121200963942043393433721555433, 4592676942963368381676178826582121303149079572759596838683
Offset: 0

Views

Author

Geoffrey Critzer, Jun 18 2024

Keywords

Comments

T is a periodic matrix if T = T^k for some k > 1. T is periodic iff image(T) = image(T^2) iff x^2 does not divide the minimal polynomial of T.

Crossrefs

Programs

  • Mathematica
    nn = 11; B[n_] := Product[q^n - q^i, {i, 0, n - 1}]/(q - 1)^n /. q -> 3;
    e[x_] := Sum[x^n/B[n], {n, 0, nn}];f[x_] := Sum[(q - 1)^n x^n, {n, 0, nn}] /. q -> 3; Table[B[n], {n, 0, nn}] CoefficientList[Series[e[x] f[ x], {x, 0, nn}], x]

Formula

Sum_{n>=0}a_n*x^n/B(n) = e(x)*f(x) where B(n) = A053290(n)/2^n, e(x) = Sum{n>=0}x^n/B(n) and f(x) = Sum_{n>=0} (2x)^n.
Showing 1-3 of 3 results.