cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A348015 Number of periodic n X n matrices over GF(2).

Original entry on oeis.org

1, 2, 13, 365, 43801, 21725297, 43798198753, 355991759464385, 11619571028917526401, 1520025803718875133673217, 796153035368657542014822907393, 1668838669721233396228446711227874305, 13995815633937307151473642050515241531340801
Offset: 0

Views

Author

Geoffrey Critzer, Sep 24 2021

Keywords

Comments

Here, T is a periodic matrix if T = T^k for some k > 1. T is periodic iff image(T) = image(T^2) iff x^2 does not divide the minimal polynomial of T.

Examples

			a(2) = 13 because there are 16 2 X 2 matrices over GF(2) and all are recurrent except for {{0,0},{1,0}}, {{0,1},{0,0}}, and {{1,1},{1,1}}.  16-3 = 13.
		

Crossrefs

Cf. A002884.
Row sums of A348622.

Programs

  • Maple
    b:= proc(n) option remember; mul(2^n-2^i, i=0..n-1) end:
    a:= n-> add(b(n)/b(n-k), k=0..n):
    seq(a(n), n=0..14);  # Alois P. Heinz, Oct 30 2021
  • Mathematica
    nn=12; q = 2; b[p_, i_] := Count[p, i];
    s[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];
    aut[deg_, p_] := Product[Product[q^(s[p, i] deg) - q^((s[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; \[Nu] =Table[1/n Sum[MoebiusMu[n/m] q^m, {m, Divisors[n]}], {n, 1,nn}];l[greatestpart_] := Level[Table[IntegerPartitions[n, {0, n}, Range[greatestpart]], {n, 0, nn}], {2}];
    g1[u_, v_, deg_] :=Total[Map[v u^(deg Total[#])/aut[deg, #] &, l[1]]];
    g2[u_, v_, deg_] :=Total[Map[v u^(deg Total[#])/aut[deg, #] &, l[nn]]];
    Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[
      Series[g1[u, 1, 1] g2[u, 1, 1] Product[g2[u, 1, d]^\[Nu][[d]], {d, 2, nn}] , {u, 0, nn}], u]

Formula

a(n) = Sum_{d=0...n} A002884(n)/A002884(n-d). - Geoffrey Critzer, Oct 30 2021
Sum_{n>=0} a(n)u^n/A002884(n) = E(u)/(1-u) where E(u) = Sum_{n>=0} u^n/A002884(n). - Geoffrey Critzer, Oct 30 2021
Limit_{n->infinity} a(n)/2^(n^2) = (Product_{r>=1} (1-1/2^r)) * Sum_{n>=0} 1/A002884(n) = 0.62744086981206237307... . - Geoffrey Critzer, Oct 30 2021
Sum_{n>=0} a(n)*x^n/B(n) = e(x)*g(x) where e(x) = Sum_{n>=0} x^n/B(n), g(x) = Sum_{n>=0} Product_{i=0..n-1} (q^n-q^i)*x^n/B(n), B(n) = Product_{i=0..n-1} (q^n-q^i)/(q-1)^n and q=2. - Geoffrey Critzer, Jan 03 2025

Extensions

Data terms for n >= 3 corrected by Geoffrey Critzer, Oct 30 2021
Title improved by Geoffrey Critzer, Sep 16 2022

A348958 Triangular array read by rows. T(n,k) = A002884(n)/A002884(n-k)*2^((n-k)(n-k-1)), n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 4, 6, 6, 64, 112, 168, 168, 4096, 7680, 13440, 20160, 20160, 1048576, 2031616, 3809280, 6666240, 9999360, 9999360, 1073741824, 2113929216, 4095737856, 7679508480, 13439139840, 20158709760, 20158709760, 4398046511104, 8727373545472, 17182016667648, 33290157293568, 62419044925440, 109233328619520, 163849992929280, 163849992929280
Offset: 0

Views

Author

Geoffrey Critzer, Nov 04 2021

Keywords

Comments

Let ~ be the equivalence relation on the set of n X n matrices over GF(2) defined by A ~ B if and only if the dimension of the image of A^n is equal to the dimension of the image of B^n. Let A be a recurrent matrix (Cf A348622) of rank k. Then T(n,k) is the size of the equivalence class containing A.
Let X_n be the random variable that assigns to each n X n matrix A over GF(q) the value j = nullity(A^n). Then limit as n->oo of P(X_n = j) = Product_{i>=1}(1 - 1/q^i)*q^(j^2-j)/|GL_j(F_q)|. - Geoffrey Critzer, Jan 02 2025

Examples

			Triangle begins:
  1,
  1,       1,
  4,       6,       6,
  64,      112,     168,     168,
  4096,    7680,    13440,   20160,   20160,
  1048576, 2031616, 3809280, 6666240, 9999360, 9999360
		

Crossrefs

Cf. A348622, A002884 (main diagonal), A053763 (column k=0).

Programs

  • Mathematica
    R[n_, d_] := Product[q^n - q^i, {i, 0, n - 1}]/Product[q^(n - d) - q^i, {i, 0, n - d - 1}];Table[Table[R[n, d] q^((n - d) (n - d - 1)), {d, 0, n}], {n, 0,10}] // Grid

Formula

T(n,k) = A002884(n)/A002884(n-k)*2^((n-k)*(n-k-1)).
Sum_{n>=0} Sum_{k=0..n} T(n,k)*y^k*x^n/B(n) = f(x)*g(y*x) where f(x) = Sum_{n>=0} q^(n^2-n)*x^n/B(n), g(x) = Sum_{n>=0} Product_{i=0..n-1} (q^n-q^i)x^n/B(n), B(n) = Product_{i=0..n-1} (q^n-q^i)/(q-1)^n and q=2. - Geoffrey Critzer, Jan 02 2025
Showing 1-2 of 2 results.