cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348075 Triangular array read by rows: T(n,k) is the number of derangements whose shortest cycle has exactly k nodes; n >= 1, 1 <= k <= n.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 3, 0, 6, 0, 20, 0, 0, 24, 0, 105, 40, 0, 0, 120, 0, 714, 420, 0, 0, 0, 720, 0, 5845, 2688, 1260, 0, 0, 0, 5040, 0, 52632, 22400, 18144, 0, 0, 0, 0, 40320, 0, 525105, 223200, 151200, 72576, 0, 0, 0, 0, 362880, 0, 5777090, 2522520, 1425600, 1330560, 0, 0, 0, 0, 0, 3628800
Offset: 1

Views

Author

Steven Finch, Sep 27 2021

Keywords

Comments

For the statistic "length of the longest cycle", see A211871.

Examples

			Triangle begins:
  0;
  0,     1;
  0,     0,     2;
  0,     3,     0,     6;
  0,    20,     0,     0,   24;
  0,   105,    40,     0,    0,  120;
  0,   714,   420,     0,    0,    0,  720;
  0,  5845,  2688,  1260,    0,    0,    0, 5040;
  0, 52632, 22400, 18144,    0,    0,    0,    0, 40320;
  ...
		

Crossrefs

Row sums give A000166, n >= 1.
Right border gives A000142.
Column 1 gives A000004.
Column 2 gives A158243.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, x^m, add((j-1)!*
          b(n-j, min(m, j))*binomial(n-1, j-1), j=2..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Sep 27 2021
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[(j - 1)!*
         b[n - j, Min[m, j]]*Binomial[n - 1, j - 1], {j, 2, n}]];
    T[n_] := If[n == 1, {0}, CoefficientList[b[n, n], x] // Rest];
    Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Oct 03 2021, after Alois P. Heinz *)

Formula

T(n,n) = A000142(n-1), n >= 2.
T(n,2) = A158243(n), n >= 2.
T(n,k) = A145877(n,k) for k >= 2.