cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A348132 a(n) is the denominator of the relativistic sum of n velocities of 1/n, in units where the speed of light is 1.

Original entry on oeis.org

1, 5, 9, 353, 275, 66637, 18571, 24405761, 2215269, 14712104501, 411625181, 13218256749601, 109949704423, 16565151205544957, 39931933598775, 27614800115689879553, 18928981513351817, 59095217374989483261925, 11350851717672992089, 157904201452248753415276001
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2021

Keywords

Examples

			For n = 2, the sum of two velocities of 1/2 is (1/2 + 1/2)/(1 + (1/2)*(1/2)) = 4/5, thus a(2) = 5.
		

Crossrefs

Cf. A348051, A348052, A348131 (numerators).

Programs

  • Mathematica
    f[n_] := Module[{s = 1/n}, Do[s = (s + 1/n)/(1 + s/n), {k, 1, n - 1}]; s]; Denominator @ Array[f, 20]

Formula

a(2n-1) = n^(2n-1) + (n-1)^(2n-1) and a(2n) = ((2n+1)^(2n) + (2n-1)^(2n)) / 2. - Thomas Ordowski, Feb 12 2022

A348051 Triangle T(j,k) of numerators of relativistically added fractional velocities w(u,v)=(u+v)/(u*v+1), with velocities enumerated by the Farey series, i.e., u(m) = v(m) = A007305(m)/A007306(m), m>=2.

Original entry on oeis.org

4, 5, 3, 7, 9, 12, 2, 7, 11, 8, 3, 11, 16, 13, 20, 11, 7, 19, 17, 25, 15, 10, 13, 17, 16, 23, 27, 24, 7, 1, 13, 3, 5, 5, 19, 5, 11, 13, 4, 1, 8, 31, 29, 17, 28, 14, 17, 5, 4, 31, 39, 36, 23, 37, 48, 13, 2, 23, 19, 29, 9, 33, 11, 7, 9, 21, 5, 19, 26, 23, 34, 41, 37, 9, 14, 53, 49, 56
Offset: 2

Views

Author

Hugo Pfoertner, Sep 25 2021

Keywords

Comments

The velocities are assumed to be given in units of c, and thus c = 1.

Examples

			The triangle of added fractions begins:
     u   1/2   1/3   2/3   1/4   2/5   3/5   3/4   1/5   2/7   3/8   3/7
   v \    .     .     .     .     .     .     .     .     .     .     .
  1/2 |  4/5    .     .     .     .     .     .     .     .     .     .
  1/3 |  5/7   3/5    .     .     .     .     .     .     .     .     .
  2/3 |  7/8   9/11 12/13   .     .     .     .     .     .     .     .
  1/4 |  2/3   7/13 11/14  8/17   .     .     .     .     .     .     .
  2/5 |  3/4  11/17 16/19 13/22 20/29   .     .     .     .     .     .
  3/5 | 11/13  7/9  19/21 17/23 25/31 15/17   .     .     .     .     .
  3/4 | 10/11 13/15 17/18 16/19 23/26 27/29 24/25   .     .     .     .
  1/5 |  7/11  1/2  13/17  3/7   5/9   5/7  19/23  5/13   .     .     .
  2/7 | 11/16 13/23  4/5   1/2   8/13 31/41 29/34 17/37 28/53   .     .
  3/8 | 14/19 17/27  5/6   4/7  31/46 39/49 36/41 23/43 37/62 48/73   .
  3/7 | 13/17  2/3  23/27 19/31 29/41  9/11 33/37 11/19  7/11  9/13 21/29
		

Crossrefs

A348052 are the corresponding denominators.

A348052 Triangle T(j,k) of denominators of relativistically added fractional velocities w(u,v)=(u+v)/(u*v+1), with velocities enumerated by the Farey series, i.e., u(m) = v(m) = A007305(m)/A007306(m), m>=2.

Original entry on oeis.org

5, 7, 5, 8, 11, 13, 3, 13, 14, 17, 4, 17, 19, 22, 29, 13, 9, 21, 23, 31, 17, 11, 15, 18, 19, 26, 29, 25, 11, 2, 17, 7, 9, 7, 23, 13, 16, 23, 5, 2, 13, 41, 34, 37, 53, 19, 27, 6, 7, 46, 49, 41, 43, 62, 73, 17, 3, 27, 31, 41, 11, 37, 19, 11, 13, 29, 6, 25, 29, 32, 43, 47, 40, 13, 19, 68, 61, 65
Offset: 2

Views

Author

Hugo Pfoertner, Sep 25 2021

Keywords

Examples

			See A348051.
The triangle starts:
  4/5,
  5/7,  3/5,
  7/8,  9/11, 12/13,
  2/3,  7/13, 11/14,  8/17,
  3/4, 11/17, 16/19, 13/22, 20/29
....
		

Crossrefs

A348051 are the corresponding numerators.

A348829 Numerator of relativistic sum w(2n) of the velocities v = 1/p^(2n) over all primes p, in units where the speed of light c = 1.

Original entry on oeis.org

3, 1, 12, 59, 521, 872492, 415603, 471263387, 100453109125251, 249063001217323, 1206701295264057, 2340564635396243082668, 1836709980831869650909, 7917057291763619291770993, 6790679763108188972468718224386027, 497252110757159525928442098399943
Offset: 1

Views

Author

Thomas Ordowski, Nov 01 2021

Keywords

Comments

Generally, for a complex number s, w(s) = tanh(Sum_{p prime} arctanh(1/p^s)), assuming that Re(s) > 1.
Theorem. If Re(s) > 1, then w(s) = (1 - t(s))/(1 + t(s)) with t(s) = zeta(2s)/zeta(s)^2, where zeta(z) is the Riemann zeta function of z.
Proof. Einstein's formula w = (u + v)/(1 + uv) can be expanded as (1-w)/(1+w) = ((1-u)/(1+u))((1-v)/(1+v))... for any number of velocities u, v, ... Hence, by the Euler product, Product_{p prime} (1-1/p^s)/(1+1/p^s) = zeta(2s)/zeta(s)^2, qed. Note that the function f(x) = (1-x)/(1+x) is an involution.
If an integer s > 0 is even, then w(s) is rational (related to the Bernoulli numbers B_{s} and B_{2s}).
Conjecture: if an odd integer s > 1, then w(s) is irrational. Cf. W. Kohnen (link).
Note: Apery's constant zeta(3) = 1.202... is irrational.

Examples

			w(2) = 3/7, w(4) = 1/13, w(6) = 12/703, ...
		

Crossrefs

The denominators are A348830.
See also A348131, A348132.

Programs

  • Mathematica
    r[s_] := Zeta[2*s]/Zeta[s]^2; w[s_] := (1 - r[s])/(1 + r[s]); Table[Numerator[w[2*n]], {n, 1, 15}] (* Amiram Eldar, Nov 01 2021 *)

Formula

a(n) = Numerator(tanh(Sum_{p prime} arctanh(1/p^(2n)))).
a(n) = Numerator((zeta(2n)^2-zeta(4n))/(zeta(2n)^2+zeta(4n))).
a(n) = Numerator((1-t(2n))/(1+t(2n))), where t(2n) = A114362(n)/A114363(n).
If Re(s) > 1, then w(s) = f(f(w(s))) = (1-t(s))/(1+t(s)) and t(s) = f(f(t(s))) = (1-w(s))/(1+w(s)) = zeta(2s)/zeta(s)^2, where f(x) = (1-x)/(1+x). See my theorem and the note under my proof of this theorem. - Thomas Ordowski, Jan 03 2022
Conjecture: 0 < w(2n) - (1/2^(2n) + 1/3^(2n) + 1/5^(2n) + 1/7^(2n)) < 1/11^(2n) for every n > 0. Amiram Eldar confirmed my conjecture numerically up to n = 10^4. - Thomas Ordowski, Nov 13 2022
It can be proven that P(2n) - w(2n) ~ 1/12^(2n), where P(x) = Sum_{prime p} 1/p^x = 1/2^x + 1/3^x + 1/5^x + ... is the prime zeta function of real x > 1. - Thomas Ordowski, Nov 06 2024

Extensions

More terms from Amiram Eldar, Nov 01 2021

A348140 a(n) is the numerator of tan(n * arctan(1/n)).

Original entry on oeis.org

1, 4, 13, 240, 719, 42372, 92567, 14970816, 21475201, 8825080100, 7836127861, 7809130867824, 4132643140079, 9678967816041188, 2973238691433583, 16000787866533953280, 2798084251807349761, 34017524842099233036996, 3336132453587291393821, 90417110945911655996319600
Offset: 1

Views

Author

Amiram Eldar, Oct 02 2021

Keywords

Examples

			The fractions begin with 1, 4/3, 13/9, 240/161, 719/475, 42372/27755, 92567/60319, 14970816/9722113, 21475201/13913289, 8825080100/5707904499, ...
		

Crossrefs

Cf. A049471, A348131, A348132, A348141 (denominators).

Programs

  • Mathematica
    f[n_] := Module[{s = 1/n}, Do[s = (s + 1/n)/(1 - s/n), {k, 1, n - 1}]; s]; Numerator @ Array[f, 20]

Formula

Lim_{n->oo} a(n)/A348141(n) = tan(1) (A049471).

A348141 a(n) is the denominator of tan(n * arctan(1/n)).

Original entry on oeis.org

1, 3, 9, 161, 475, 27755, 60319, 9722113, 13913289, 5707904499, 5061910249, 5039646554593, 2665025213747, 6237995487261915, 1915304790146175, 10303367499652761601, 1801181048868783377, 21891769059478538933603, 2146451844926024801801, 58162468900440912135124001
Offset: 1

Views

Author

Amiram Eldar, Oct 02 2021

Keywords

Crossrefs

Cf. A348131, A348132, A348140 (numerators).

Programs

  • Mathematica
    f[n_] := Module[{s = 1/n}, Do[s = (s + 1/n)/(1 - s/n), {k, 1, n - 1}]; s]; Denominator @ Array[f, 20]
Showing 1-6 of 6 results.