cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A114362 Numerator of zeta(4n)/zeta(2n)^2 (with a(0)=2 instead of -2).

Original entry on oeis.org

2, 2, 6, 691, 7234, 523833, 3545461365, 3392780147, 15418642082434, 26315271553053477373, 261082718496449122051, 2530297234481911294093, 39265823582984723803743892829, 61628132164268458257532691681
Offset: 0

Views

Author

Benoit Cloitre, Feb 09 2006; corrected Feb 22 2006

Keywords

Comments

zeta(4n)/zeta(2n)^2 is a rational value expressible in term of Bernoulli's numbers (A027641).
Conjecture: if an integer n > 1 is odd, then zeta(2n)/zeta(n)^2 is irrational. Cf. W. Kohnen (link) and my conjecture in A348829. - Thomas Ordowski, Jan 05 2022
Conjecture: (1 - t(n))/(1 + t(n)) = 1/2^n + 1/3^n + 1/5^n + 1/7^n + O(1/11^n), where t(n) = zeta(2n)/zeta(n)^2. Cf. A348829. - Thomas Ordowski, Nov 13 2022

Examples

			2/1, 2/5, 6/7, 691/715, 7234/7293, 523833/524875, 3545461365/3547206349, ...
		

Crossrefs

Cf. A000984, A027641, A027642, A114363 (denominators), A348829, A348830.

Programs

  • Mathematica
    a[n_] := Numerator[Zeta[4*n]/Zeta[2*n]^2]; a[0] = 2; Array[a, 14, 0] (* Amiram Eldar, Mar 04 2023 *)
  • PARI
    z(n)=bernfrac(2*n)*(-1)^(n - 1)*2^(2*n-1)/(2*n)!;
    a(n)=if(n<1,2,numerator(z(2*n)/z(n)^2))

Formula

Product_{p primes} (p^{2n}-1)/(p^{2n}+1) = zeta(4n)/zeta(2n)^2.
For n > 0, a(n) = Numerator((D(n) - N(n)) / (D(n) + N(n))), where N(n) = A348829(n) and D(n) = A348830(n). See my comments and formulas in A348829. - Thomas Ordowski, Jan 05 2022
From Amiram Eldar, Mar 04 2023: (Start)
a(n)/A114363(n) = -2*B(4*n)/(binomial(4*n,*2n)*B(2*n)) = -2*(A027641(4*n)/A027642(4*n))/(A000984(2*n)*A027641(2*n)/A027642(2*n)), for n >= 1, where B(n) is the n-th Bernoulli number.
A114363(n)/a(n) = Sum_{x in Q+} 1/f(x)^(2*n), for n >= 1, where Q+ is the set of the positive rational numbers, and if x = k/m in lowest terms, then f(x) = k*m (Wilf, 2004). (End)

A114363 Denominator of zeta(4n)/zeta(2n)^2.

Original entry on oeis.org

1, 5, 7, 715, 7293, 524875, 3547206349, 3393195750, 15419113345821, 26315472459271727875, 261083216622451556697, 2530298441183206558150, 39265828264113994596230058165, 61628134000978439089402342590
Offset: 0

Views

Author

Benoit Cloitre, Feb 09 2006; corrected Feb 22 2006

Keywords

Comments

zeta(4n)/zeta(2n)^2 is a rational value expressible in term of Bernoulli's numbers (A027641).

Examples

			-2/1, 2/5, 6/7, 691/715, 7234/7293, 523833/524875, 3545461365/3547206349, ...
		

Crossrefs

Cf. A027641, A027642, A114362 (numerators), A348829, A348830.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, Denominator[ Zeta[4*n] / Zeta[2*n]^2 ]] (* Michael Somos, Jan 27 2012 *)
  • PARI
    z(n)=bernfrac(2*n)*(-1)^(n - 1)*2^(2*n-1)/(2*n)!;
    a(n)=if(n<1,1,denominator(z(2*n)/z(n)^2))

Formula

For n > 0, Product_{p primes} (p^{2n}-1)/(p^{2n}+1) = zeta(4n)/zeta(2n)^2.
For n > 0, a(n) = Denominator((D(n) - N(n)) / (D(n) + N(n))), where N(n) = A348829(n) and D(n) = A348830(n). See my comments and formulas in A348829. - Thomas Ordowski, Feb 12 2022

A348830 Denominator of relativistic sum w(2n) of the velocities v = 1/p^(2n) over all primes p, in units where the speed of light c = 1.

Original entry on oeis.org

7, 13, 703, 14527, 524354, 3546333857, 6785975897, 30837755428255, 26315372006162602624, 261082967559450339374, 5060595675665117852243, 39265825923549359199986975497, 123256266165246897346935034271, 2125193947328394509208261354339475, 7291398849693213195350018936947639700634973, 2135676603454582708484868425511295057240283
Offset: 1

Views

Author

Thomas Ordowski, Nov 01 2021

Keywords

Examples

			w(2) = 3/7, w(4) = 1/13, w(6) = 12/703, ...
		

Crossrefs

The numerators are A348829.

Programs

  • Mathematica
    r[s_] := Zeta[2*s]/Zeta[s]^2; w[s_] := (1 - r[s])/(1 + r[s]); Table[Denominator[w[2*n]], {n, 1, 15}] (* Amiram Eldar, Nov 01 2021 *)

Formula

a(n) = Denominator(tanh(Sum_{p prime} arctanh(1/p^(2n)))).
a(n) = Denominator((zeta(2n)^2-zeta(4n))/(zeta(2n)^2+zeta(4n))).
a(n) = Denominator((1-t(2n))/(1+t(2n))), where t(2n) = A114362(n)/A114363(n).

Extensions

More terms from Amiram Eldar, Nov 01 2021
Showing 1-3 of 3 results.