cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A114362 Numerator of zeta(4n)/zeta(2n)^2 (with a(0)=2 instead of -2).

Original entry on oeis.org

2, 2, 6, 691, 7234, 523833, 3545461365, 3392780147, 15418642082434, 26315271553053477373, 261082718496449122051, 2530297234481911294093, 39265823582984723803743892829, 61628132164268458257532691681
Offset: 0

Views

Author

Benoit Cloitre, Feb 09 2006; corrected Feb 22 2006

Keywords

Comments

zeta(4n)/zeta(2n)^2 is a rational value expressible in term of Bernoulli's numbers (A027641).
Conjecture: if an integer n > 1 is odd, then zeta(2n)/zeta(n)^2 is irrational. Cf. W. Kohnen (link) and my conjecture in A348829. - Thomas Ordowski, Jan 05 2022
Conjecture: (1 - t(n))/(1 + t(n)) = 1/2^n + 1/3^n + 1/5^n + 1/7^n + O(1/11^n), where t(n) = zeta(2n)/zeta(n)^2. Cf. A348829. - Thomas Ordowski, Nov 13 2022

Examples

			2/1, 2/5, 6/7, 691/715, 7234/7293, 523833/524875, 3545461365/3547206349, ...
		

Crossrefs

Cf. A000984, A027641, A027642, A114363 (denominators), A348829, A348830.

Programs

  • Mathematica
    a[n_] := Numerator[Zeta[4*n]/Zeta[2*n]^2]; a[0] = 2; Array[a, 14, 0] (* Amiram Eldar, Mar 04 2023 *)
  • PARI
    z(n)=bernfrac(2*n)*(-1)^(n - 1)*2^(2*n-1)/(2*n)!;
    a(n)=if(n<1,2,numerator(z(2*n)/z(n)^2))

Formula

Product_{p primes} (p^{2n}-1)/(p^{2n}+1) = zeta(4n)/zeta(2n)^2.
For n > 0, a(n) = Numerator((D(n) - N(n)) / (D(n) + N(n))), where N(n) = A348829(n) and D(n) = A348830(n). See my comments and formulas in A348829. - Thomas Ordowski, Jan 05 2022
From Amiram Eldar, Mar 04 2023: (Start)
a(n)/A114363(n) = -2*B(4*n)/(binomial(4*n,*2n)*B(2*n)) = -2*(A027641(4*n)/A027642(4*n))/(A000984(2*n)*A027641(2*n)/A027642(2*n)), for n >= 1, where B(n) is the n-th Bernoulli number.
A114363(n)/a(n) = Sum_{x in Q+} 1/f(x)^(2*n), for n >= 1, where Q+ is the set of the positive rational numbers, and if x = k/m in lowest terms, then f(x) = k*m (Wilf, 2004). (End)

A231273 Numerator of zeta(4n)/(zeta(2n) * Pi^(2n)).

Original entry on oeis.org

1, 1, 1, 691, 3617, 174611, 236364091, 3392780147, 7709321041217, 26315271553053477373, 261082718496449122051, 2530297234481911294093, 5609403368997817686249127547, 61628132164268458257532691681, 354198989901889536240773677094747
Offset: 0

Views

Author

Leo Depuydt, Nov 07 2013

Keywords

Comments

Integer component of the numerator of a close variant of Euler's infinite prime product zeta(2n) = Product_{k>=1} (prime(k)^(2n))/(prime(k)^(2n)-1), namely with all minus signs changed into plus signs, as follows: zeta(4n)/zeta(2n) = Product_{k>=1} (prime(k)^(2n))/(prime(k)^(2n)+1). The transcendental component is Pi^(2n).
For a detailed account of the results, including proof and relation to the zeta function, see Links for the PDF file submitted as supporting material.
The reference to Apostol is to a discussion of the equivalence of 1) zeta(2s)/zeta(s) and 2) a related infinite prime product, that is, Product_{sigma>1} prime(n)^s/(prime(n)^s + 1), with s being a complex variable such that s = sigma + i*t where sigma and t are real (following Riemann), using a type of proof different from the one posted below involving zeta(4n)/zeta(2n). On this, see also Hardy and Wright cited below. - Leo Depuydt, Nov 22 2013, Nov 27 2013
The background of the sequence is now described in the link below to L. Depuydt, The Prime Sequence ... . - Leo Depuydt, Aug 22 2014
From Robert Israel, Aug 22 2014: (Start)
Numerator of (-1)^n*B(4*n)*4^n*(2*n)!/(B(2*n)*(4*n)!), where B(n) are the Bernoulli numbers (see A027641 and A027642).
Not the same as abs(A001067(2*n)): they differ first at n=17.
(End)

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976, p. 231.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth Edition, Clarendon Press, 1960, p. 255.

Crossrefs

Cf. A231327 (corresponding denominator).
Cf. A114362 and A114363 (closely related results).
Cf. A001067, A046968, A046988, A098087, A141590, A156036 (same number sequence, though in various transformations (alternation of signs, intervening numbers, and so on)).

Programs

  • Maple
    seq(numer((-1)^n*bernoulli(4*n)*4^n*(2*n)!/(bernoulli(2*n)*(4*n)!)),n=0..100); # Robert Israel, Aug 22 2014
  • Mathematica
    Numerator[Table[Zeta[4n]/(Zeta[2n] * Pi^(2n)), {n, 0, 15}]] (* T. D. Noe, Nov 18 2013 *)

A348829 Numerator of relativistic sum w(2n) of the velocities v = 1/p^(2n) over all primes p, in units where the speed of light c = 1.

Original entry on oeis.org

3, 1, 12, 59, 521, 872492, 415603, 471263387, 100453109125251, 249063001217323, 1206701295264057, 2340564635396243082668, 1836709980831869650909, 7917057291763619291770993, 6790679763108188972468718224386027, 497252110757159525928442098399943
Offset: 1

Views

Author

Thomas Ordowski, Nov 01 2021

Keywords

Comments

Generally, for a complex number s, w(s) = tanh(Sum_{p prime} arctanh(1/p^s)), assuming that Re(s) > 1.
Theorem. If Re(s) > 1, then w(s) = (1 - t(s))/(1 + t(s)) with t(s) = zeta(2s)/zeta(s)^2, where zeta(z) is the Riemann zeta function of z.
Proof. Einstein's formula w = (u + v)/(1 + uv) can be expanded as (1-w)/(1+w) = ((1-u)/(1+u))((1-v)/(1+v))... for any number of velocities u, v, ... Hence, by the Euler product, Product_{p prime} (1-1/p^s)/(1+1/p^s) = zeta(2s)/zeta(s)^2, qed. Note that the function f(x) = (1-x)/(1+x) is an involution.
If an integer s > 0 is even, then w(s) is rational (related to the Bernoulli numbers B_{s} and B_{2s}).
Conjecture: if an odd integer s > 1, then w(s) is irrational. Cf. W. Kohnen (link).
Note: Apery's constant zeta(3) = 1.202... is irrational.

Examples

			w(2) = 3/7, w(4) = 1/13, w(6) = 12/703, ...
		

Crossrefs

The denominators are A348830.
See also A348131, A348132.

Programs

  • Mathematica
    r[s_] := Zeta[2*s]/Zeta[s]^2; w[s_] := (1 - r[s])/(1 + r[s]); Table[Numerator[w[2*n]], {n, 1, 15}] (* Amiram Eldar, Nov 01 2021 *)

Formula

a(n) = Numerator(tanh(Sum_{p prime} arctanh(1/p^(2n)))).
a(n) = Numerator((zeta(2n)^2-zeta(4n))/(zeta(2n)^2+zeta(4n))).
a(n) = Numerator((1-t(2n))/(1+t(2n))), where t(2n) = A114362(n)/A114363(n).
If Re(s) > 1, then w(s) = f(f(w(s))) = (1-t(s))/(1+t(s)) and t(s) = f(f(t(s))) = (1-w(s))/(1+w(s)) = zeta(2s)/zeta(s)^2, where f(x) = (1-x)/(1+x). See my theorem and the note under my proof of this theorem. - Thomas Ordowski, Jan 03 2022
Conjecture: 0 < w(2n) - (1/2^(2n) + 1/3^(2n) + 1/5^(2n) + 1/7^(2n)) < 1/11^(2n) for every n > 0. Amiram Eldar confirmed my conjecture numerically up to n = 10^4. - Thomas Ordowski, Nov 13 2022
It can be proven that P(2n) - w(2n) ~ 1/12^(2n), where P(x) = Sum_{prime p} 1/p^x = 1/2^x + 1/3^x + 1/5^x + ... is the prime zeta function of real x > 1. - Thomas Ordowski, Nov 06 2024

Extensions

More terms from Amiram Eldar, Nov 01 2021

A348830 Denominator of relativistic sum w(2n) of the velocities v = 1/p^(2n) over all primes p, in units where the speed of light c = 1.

Original entry on oeis.org

7, 13, 703, 14527, 524354, 3546333857, 6785975897, 30837755428255, 26315372006162602624, 261082967559450339374, 5060595675665117852243, 39265825923549359199986975497, 123256266165246897346935034271, 2125193947328394509208261354339475, 7291398849693213195350018936947639700634973, 2135676603454582708484868425511295057240283
Offset: 1

Views

Author

Thomas Ordowski, Nov 01 2021

Keywords

Examples

			w(2) = 3/7, w(4) = 1/13, w(6) = 12/703, ...
		

Crossrefs

The numerators are A348829.

Programs

  • Mathematica
    r[s_] := Zeta[2*s]/Zeta[s]^2; w[s_] := (1 - r[s])/(1 + r[s]); Table[Denominator[w[2*n]], {n, 1, 15}] (* Amiram Eldar, Nov 01 2021 *)

Formula

a(n) = Denominator(tanh(Sum_{p prime} arctanh(1/p^(2n)))).
a(n) = Denominator((zeta(2n)^2-zeta(4n))/(zeta(2n)^2+zeta(4n))).
a(n) = Denominator((1-t(2n))/(1+t(2n))), where t(2n) = A114362(n)/A114363(n).

Extensions

More terms from Amiram Eldar, Nov 01 2021

A217926 A sequence relating to the rational values zeta(2n)^2/zeta(4n), which are expressible in terms of Bernoulli's numbers (see comments for definition of the sequence).

Original entry on oeis.org

7, 17, 29, 29, 41, 41, 59, 59, 71, 97, 97, 97, 101, 101, 101, 137, 137, 149, 149, 149, 179, 179, 179, 191, 191, 191, 191, 191, 227, 227, 227, 227, 227, 269, 269, 269, 269, 307, 307, 311, 311, 311, 311, 347, 347, 347, 347, 347, 347, 419, 419, 419, 419, 419
Offset: 1

Views

Author

Roger Thompson, Oct 15 2012

Keywords

Comments

The rational value zeta(2n)^2 / zeta(4n) = A114363(n) / A114362(n) = Product(p^4n/(((p^2n) - 1)^2)) / Product(p^4n/((p^4n) - 1)) = Product(((p^2n) + 1)/((p^2n) - 1)), where the product is over all primes.
Denote Product(((p^2n) + 1)/((p^2n) - 1)), where the product is over xxx, by F(n, xxx). For example, zeta(2n)^2 / zeta(4n) = F(n, all primes).
By definition, F(n, all primes) = F(n,primes < P) x [(P^2n) + 1]/[(P^2n) - 1]}] x F(n, primes p > P).
For small enough P, F(n, primes p > P) will be much closer to 1 than ((P^2n) + 1)/((P^2n) - 1))), so if Q is the value for which ((Q^2n) + 1)/((Q^2n) - 1) = F(n, all primes) / F(n,primes < P), Q will only be slightly less than P, so rounding Q up to the next integer (for Q < 2) and rounding up to the next odd integer (for Q >= 2) should give P. The sequence identifies the lowest P for a particular n for which such rounding fails to give P, as follows:
The sequence entry a(n) for n > 0 = the lowest prime P for which Q < P - 2, where Q is the value for which ((Q^2n) + 1)/((Q^2n) - 1) = F(n, all primes) / F(n,primes < P).
For sufficiently large n, a(n)/(2n) is bounded below, and appears to be bounded above (see A217552).
The primes up to at least A217552(n) * (2n) can therefore be reliably generated from A114363(n) / A114362(n) as follows:
Find the value of Q such that ((Q^2n) + 1)/((Q^2n) - 1) = A114363(n) / A114362(n) and round up to the nearest integer, giving 2. Then find the value of Q such that ((Q^2n) + 1)/((Q^2n) - 1) = (A114363(n) / A114362(n))/(F(n, primes <= last value found, i.e., 2)) and round up to the nearest odd integer, giving 3. Then find the value of Q such that ((Q^2n) + 1)/((Q^2n) - 1) = (A114363(n) / A114362(n))/(F(n, primes <= last value found, i.e., 3)) and round up to the nearest odd integer, and so on.

Examples

			For n = 4, A217552(n) * (2n) = 26.4417..., so primes up to at least this value can be generated. Successive Q and rounded up Q values:
   1.99029    2
   2.99331    3
   4.95780    5
   6.96977    7
  10.63524   11
  12.73590   13
  16.12527   17
  18.42182   19
  22.27250   23
  26.81206   27 (Q < 29 - 2)
so a(4) = 29.
		

Crossrefs

A231327 Denominator of rational component of zeta(4n)/zeta(2n).

Original entry on oeis.org

1, 15, 105, 675675, 34459425, 16368226875, 218517792968475, 30951416768146875, 694097901592400930625, 23383376494609715287281703125, 2289686345687357378035370971875, 219012470258383844016431785453125, 4791965046290912124048163518904807546875
Offset: 0

Views

Author

Leo Depuydt, Nov 07 2013

Keywords

Comments

Denominator of a close variant of Euler's infinite prime product zeta(2n) = Product_{k>=1} (prime(k)^(2n))/(prime(k)^(2n)-1), namely with all minus signs changed into plus signs, as follows: zeta(4n)/zeta(2n) = Product_{k>=1} prime(k)^(2n)/(prime(k)^(2n)+1).
For a detailed account of the results in question, including proof and relation to the zeta function, see the PDF file submitted as supporting material in A231273.
The reference to Apostol below is a discussion of the equivalence of 1) zeta(2s)/zeta(s) and 2) a related infinite prime product, that is, Product_{sigma>1} prime(n)^s/(prime(n)^s + 1), with s being a complex variable such that s = sigma + i*t where sigma and t are real (following Riemann), using a type of proof different from the one posted below involving zeta(4n)/zeta(2n). - Leo Depuydt, Nov 22 2013
Denominator of B(4*n)*4^n*(2*n)!/(B(2*n)*(4*n)!) where B(n) are the Bernoulli numbers (see A027641 and A027642). - Robert Israel, Aug 22 2014

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976, p. 231.

Crossrefs

Cf. A231273 (the corresponding numerator).
Cf. A114362 and A114363 (closely related results).
Cf. A001067, A046968, A046988, A098087, A141590, and A156036 (same number sequence as found in numerator, though in various transformations (alternation of sign, intervening numbers, and so on)).
Cf. A027641 and A027642.

Programs

  • Maple
    seq(denom(bernoulli(4*n)*4^n*(2*n)!/(bernoulli(2*n)*(4*n)!)),n=0..100); # Robert Israel, Aug 22 2014
  • Mathematica
    Denominator[Table[Zeta[4 n]/Zeta[2 n], {n, 0, 15}]] (* T. D. Noe, Nov 15 2013 *)

A340065 Decimal expansion of the Product_{p>=2} 1+p^2/((p-1)^2*(p+1)^2) where p are successive prime numbers A000040.

Original entry on oeis.org

1, 8, 1, 0, 7, 8, 1, 4, 7, 6, 1, 2, 1, 5, 6, 2, 9, 5, 2, 2, 4, 3, 1, 2, 5, 9, 0, 4, 4, 8, 6, 2, 5, 1, 8, 0, 8, 9, 7, 2, 5, 0, 3, 6, 1, 7, 9, 4, 5, 0, 0, 7, 2, 3, 5, 8, 9, 0, 0, 1, 4, 4, 7, 1, 7, 8, 0, 0, 2, 8, 9, 4, 3, 5, 6, 0, 0, 5, 7, 8, 8, 7, 1, 2, 0, 1, 1, 5, 7, 7, 4, 2, 4, 0, 2, 3, 1, 5, 4, 8, 4, 8, 0, 4, 6
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2020

Keywords

Comments

This is a rational number.
This constant does not belong to the infinite series of prime number products of the form: Product_{p>=2} (p^(2*n)-1)/(p^(2*n)+1),
which are rational numbers equal to zeta(4*n)/(zeta(2*n))^2 = A114362(n+1)/A114363(n+1).
This number has decimal period length 230:
1.81(0781476121562952243125904486251808972503617945007235890014471780028943
5600578871201157742402315484804630969609261939218523878437047756874095
5137481910274963820549927641099855282199710564399421128798842257597684
51519536903039073806).

Examples

			1.8107814761215629522431259...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[5005/2764,105]][[1]]
  • PARI
    default(realprecision,105)
    prodeulerrat(1+p^2/((p-1)^2*(p+1)^2))

Formula

Equals 5005/2764 = 5*7*11*13/(2^2*691).
Equals Product_{n>=1} 1+A000040(n)^2/A084920(n)^2.
Equals (13/9)*A340066.
From Vaclav Kotesovec, Dec 29 2020: (Start)
Equals 3/2 * (Product_{p prime} (p^6+1)/(p^6-1)) * (Product_{p prime} (p^4+1)/(p^4-1)).
Equals 7*zeta(6)^2 / (4*zeta(12)).
Equals -7*binomial(12, 6) * Bernoulli(6)^2 / (8*Bernoulli(12)). (End)
Equals Sum_{k>=1} A005361(k)/k^2. - Amiram Eldar, Jan 23 2024

A340066 Decimal expansion of the Product_{p>=3} 1+p^2/((p-1)^2*(p+1)^2) where p are successive prime numbers A000040.

Original entry on oeis.org

1, 2, 5, 3, 6, 1, 7, 9, 4, 5, 0, 0, 7, 2, 3, 5, 8, 9, 0, 0, 1, 4, 4, 7, 1, 7, 8, 0, 0, 2, 8, 9, 4, 3, 5, 6, 0, 0, 5, 7, 8, 8, 7, 1, 2, 0, 1, 1, 5, 7, 7, 4, 2, 4, 0, 2, 3, 1, 5, 4, 8, 4, 8, 0, 4, 6, 3, 0, 9, 6, 9, 6, 0, 9, 2, 6, 1, 9, 3, 9, 2, 1, 8, 5, 2, 3, 8, 7, 8, 4, 3, 7, 0, 4, 7, 7, 5, 6, 8, 7, 4, 0, 9, 5, 5
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2020

Keywords

Comments

This is a rational number.
This constant does not belong to the infinite series of prime number products of the form: Product_{p>=2} (p^(2*n)-1)/(p^(2*n)+1),
which are rational numbers equal to zeta(4*n)/zeta^2(2*n) = A114362(n+1)/A114363(n+1).
This number has decimal period length 230:
1.25(3617945007235890014471780028943560057887120115774240231548480463096960
9261939218523878437047756874095513748191027496382054992764109985528219
9710564399421128798842257597684515195369030390738060781476121562952243
12590448625180897250).

Examples

			1.25361794500723589001447178...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[3465/2764, 105]][[1]]
  • PARI
    default(realprecision, 105)
    prodeulerrat(1+p^2/((p-1)^2*(p+1)^2),1,3)

Formula

Equals 3465/2764 = 3^2*5*7*11/(2^2*691).
Equals Product_{n>=2} 1+A000040(n)^2/A084920(n)^2.
Equals (9/13)*A340065.

A385809 Decimal expansion of the Product_{p prime} (p^3-1)/(p^3+1).

Original entry on oeis.org

7, 0, 4, 0, 7, 2, 4, 8, 7, 3, 2, 0, 7, 8, 4, 4, 7, 8, 2, 9, 6, 2, 9, 8, 1, 9, 9, 9, 7, 8, 6, 2, 4, 4, 5, 8, 0, 9, 2, 5, 8, 3, 7, 8, 1, 1, 1, 9, 9, 8, 8, 2, 9, 3, 2, 4, 2, 8, 8, 4, 6, 9, 1, 1, 8, 9, 5, 3, 7, 1, 8, 6, 8, 7, 7, 9, 9, 1, 6, 3, 3, 0, 9, 4, 9, 4, 9, 0, 7, 4, 2, 0, 3, 0, 8, 2, 8, 1, 3, 9, 7, 5, 4, 1, 9, 9, 5, 5, 0, 8
Offset: 0

Views

Author

Artur Jasinski, Aug 01 2025

Keywords

Comments

Product_{p prime} (p^(2*n)-1)/(p^(2*n)+1) are rational numbers A114362(n)/A114363(n) = zeta(4*n)/zeta(2*n)^2.
Product_{p prime} (p^(2*n+1)-1)/(p^(2*n+1)+1) = zeta(2*(2*n+1))/zeta(2*n+1)^2.

Examples

			0.70407248732078447829629819997862445809258378...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[6]/Zeta[3]^2,10,105][[1]]
  • PARI
    prodeulerrat((p^3-1)/(p^3+1))

Formula

Equals zeta(6)/zeta(3)^2.
Equals 1 / A376742. - Amiram Eldar, Aug 01 2025

Extensions

a(109) corrected by Georg Fischer, Aug 31 2025
Showing 1-9 of 9 results.