A348213 a(n) is the number of iterations that n requires to reach a fixed point under the map x -> A348158(x).
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0
Offset: 1
Keywords
Examples
a(1) = 0 since 1 is in A326835. a(2) = 1 since there is one iteration of the map x -> A348158(x) starting from 2: 2 -> 1. a(64) = 2 since there are 2 iterations of the map x -> A348158(x) starting from 64: 64 -> 63 -> 57.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_] := Plus @@ DeleteDuplicates @ Map[EulerPhi, Divisors[n]]; a[n_] := -2 + Length @ FixedPointList[f, n]; Array[a, 100]
-
Python
from sympy import totient, divisors def A348213(n): c, k = 0, n m = sum(set(map(totient,divisors(k,generator=True)))) while m != k: k = m m = sum(set(map(totient,divisors(k,generator=True)))) c += 1 return c # Chai Wah Wu, Nov 15 2021
Comments