cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348171 Square array read by upward antidiagonals in which T(w,p) is the smallest number k whose symmetric representation of sigma(k) consists of p parts with maximum width w occurring in at least one of its p parts.

Original entry on oeis.org

1, 6, 3, 60, 78, 9, 120, 7620, 15, 21, 360, 28920, 315, 75, 81, 840, 261720, 1326, 495, 63, 147, 3360, 1422120, 3465, 22542, 525, 189, 729, 2520, 22622880, 17325, 44574, 5005, 1275, 357, 903, 5040, 12728520, 45045, 199578, 6435, 16575, 1287, 1197, 3025, 10080, 50858640, 51975, 7734558, 34034, 131835, 2145, 3861, 2499, 6875
Offset: 1

Views

Author

Hartmut F. W. Hoft, Oct 04 2021

Keywords

Comments

The first row of the table below is A318843 and the first column is A250070.
T(1,k+1) <= 3^k, for all k>=0, since for k=2j the (j+1)-st part in the symmetric representation of sigma(3^k) extends across the diagonal, and for k=2j+1 the (j+1)-st part is completed before the diagonal.
The data computed so far for a partially filled table of 15 rows and 15 columns, show that all rows, all columns (except column 4 for n <= 6 *10^7), and the diagonal are nonmonotonic.

Examples

			The 10x10 section of the table with dashes indicating values greater than 6*10^7; rows w denote the maximum width and columns p the number of parts in the symmetric representation of sigma(T(w,p)).
w\p | 1     2        3      4       5       6       7       8        9   ...
----------------------------------------------------------------------------
  1 | 1     3        9      21      81      147     729     903      3025
  2 | 6     78       15     75      63      189     357     1197     2499
  3 | 60    7620     315    495     525     1275    1287    3861     3591
  4 | 120   28920    1326   22542   5005    16575   2145    29325    11583
  5 | 360   261720   3465   44574   6435    131835  76125   24225    82593
  6 | 840   1422120  17325  199578  34034   83655   196707  468027   62985
  7 | 3360  22622880 45045  7734558 153153  442442  314925  1108965  471975
  8 | 2520  12728520 51975     -    205275  2067065 1429275 2359875  557175
  9 | 5040  50858640 225225    -    646646  2863718 2395197 5353725  2785875
  10| 10080    -     405405    -    1990989 2124694 6500375 36535499 7753875
   ...
The symmetric representation of sigma for T(2,3) = 15 consists of the three parts (8, 8, 8) of maximum widths (1, 2, 1), and that of T(3,3) = 315 consists of the three parts (158, 308, 158) of maximum widths (1, 3, 1).
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 is defined in A341969 *)
    a348171[n_,  {w_, p_}] := Module[{list=Table[0, {i, w}, {j, p}], k, s, c, u}, For[k=1, k<=n, k++, s=Map[Max, Select[SplitBy[a341969[k], # != 0 &], #[[1]] != 0 &]]; c = Length[s]; u = Max[s]; If[u<=w && c<=p, If[list[[u, c]] == 0, list[[u, c]] = k ]]]; list]
    table=a348171[60000000, {15, 15}] (* 15x15 table; very long computation time *)
    p[n_] := n-row[n-1](row[n-1]+1)/2
    w[n_] := row[n-1]-p[n]+2
    Map[table[[w[#], p[#]]]&, Range[55]] (* sequence data *)

Formula

a((w+p-2)(w+p-1)/2 + p) = T(w,p), for all w, p >= 1.
T(w(n), p(n)) = a(n), for all n >= 1, where p(n) = n - r(n-1) * (r(n-1) + 1)/2, w(n) = r(n-1) - p(n) + 2, and r(n) = floor((sqrt(8*n+1) - 1)/2).