cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A348172 a(n) is the number of positive k (can be greater than n) such that A000005(n)/n = A000005(k)/k.

Original entry on oeis.org

2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 3, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2, 2, 3, 1
Offset: 1

Views

Author

Tejo Vrush, Oct 04 2021

Keywords

Comments

The first 1 occurs at a(4). The corresponding k value is 4.
The first 2 occurs at a(1). The corresponding k values are 1, 2.
The first 3 occurs at a(9). The corresponding k values are 9, 18, 24.
The first 4 occurs at a(243). The corresponding k values are 243, 405, 486, 810.
Does every number appear in this sequence?
The first 5 is at a(3189375) with k-values {3189375, 5467500, 6378750, 6561000, 8748000} while the first 6 is at 3176523 with k-values {3176523, 4084101, 6353046, 6806835, 8168202, 13613670}. If 7 appears it does so past 10^8. - Charles R Greathouse IV, Oct 05 2021

Examples

			For n = 9, the k such that A000005(9)/9 = 1/3 = A000005(k)/k are 9, 18, and 24. Therefore, a(9) = 3.
		

Crossrefs

Programs

  • Mathematica
    Array[Function[r, Count[Range[Ceiling[4/r^2]], _?(DivisorSigma[0, #]/# == r &)]][DivisorSigma[0, #]/#] &, 105] (* or *)
    Block[{nn = 7, m, s}, m = 2^(2 nn); s = KeySort@ PositionIndex[Array[DivisorSigma[0, #]/# &, m]]; s = Reverse@ KeyDrop[s, TakeWhile[Keys@ s, 4/#^2 > m &]]; Length /@ Array[Lookup[s, DivisorSigma[0, #]/#] &, 2^nn]] (* Michael De Vlieger, Oct 04 2021 *)
  • PARI
    a(n) = {my(q=numdiv(n)/n); sum(i=1, 4/q^2, numdiv(i)/i == q);} \\ Michel Marcus, Oct 04 2021
    
  • PARI
    a(n) = my(q=numdiv(n)/n, s=denominator(q), res = 0); forstep(i=s, 4/q^2, s, if(numdiv(i) == q * i, res++)); res \\ David A. Corneth, Oct 07 2021
    
  • PARI
    \\ See Greathouse link

A349428 Smallest k such that A349410(k) = n or -1 if no such number exists.

Original entry on oeis.org

1, 4, 15, 30, 42, 360, 196, 525, 2080, 320, 7168, 123200, 35200, 150920, 196000, 1232000, 61236, 466560, 106831872, 49787136, 14580000, 155648000, 94058496, 123561984, 47385000
Offset: 1

Views

Author

Tejo Vrush, Nov 17 2021

Keywords

Crossrefs

Cf. A349410.
Similar sequences: A005179, A348184.

Programs

  • Mathematica
    f[n_] := Module[{s = NestWhileList[n * DivisorSigma[0, #] &, 1, UnsameQ, All]}, Differences[Position[s, s[[-1]]]][[1, 1]]]; seq[len_, nmax_] := Module[{v = Table[0, {len}], n = 1, c = 0, i}, While[c < len && n < nmax, i = f[n]; If[i <= len && v[[i]] == 0, c++; v[[i]] = n]; n++]; TakeWhile[v, # > 0 &]]; seq[15, 10^6] (* Amiram Eldar, Nov 17 2021 *)

Extensions

Escape clause value changed to -1. - N. J. A. Sloane, Jan 14 2022
Showing 1-2 of 2 results.