cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348191 Triangular array read by rows: T(n,k) is the number of cubic n-permutations possessing exactly k cycles; n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 6, 3, 6, 1, 0, 24, 30, 15, 10, 1, 0, 0, 234, 105, 45, 15, 1, 0, 720, 504, 1134, 315, 105, 21, 1, 0, 5040, 7020, 5292, 3969, 840, 210, 28, 1, 0, 0, 89424, 48572, 29484, 11529, 2016, 378, 36, 1, 0, 362880, 299376, 724140, 275120, 118125, 29673, 4410, 630, 45, 1
Offset: 0

Views

Author

Steven Finch, Nov 27 2021

Keywords

Comments

A permutation p in S_n is a cube if there exists q in S_n with q^3=p.

Examples

			The four cubic 3-permutations are (1, 2, 3) with three cycles (fixed points) and (1, 3, 2), (3, 2, 1) & (2, 1, 3), each with two cycles (a fixed point & a transposition).
Triangle begins:
[0]  1;
[1]  0,   1;
[2]  0,   1,   1;
[3]  0,   0,   3,    1;
[4]  0,   6,   3,    6,   1;
[5]  0,  24,  30,   15,  10,   1;
[6]  0,   0, 234,  105,  45,  15,  1;
[7]  0, 720, 504, 1134, 315, 105, 21, 1;
		

Crossrefs

Columns k=0-1 give: A000007, |A194770|.
Row sums give A103619.
Cf. A246948.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
          add(`if`(irem(j, igcd(i, 3))<>0, 0, x^j*(i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Nov 30 2021
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0,
         Sum[If[Mod[j, GCD[i, 3]] != 0, 0, x^j*(i-1)!^j*multinomial[n,
         Join[{n-i*j}, Table[i, {j}]]]/j!*b[n-i*j, i-1]], {j, 0, n/i}]]]];
    T[n_] := With[{p = b[n, n]}, Table[Coefficient[p, x, i], {i, 0, n}]];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Nov 30 2021