A348197 Composition of the g.f. of A086246 with itself.
0, 1, 2, 4, 10, 28, 84, 264, 860, 2880, 9862, 34392, 121770, 436688, 1583146, 5793216, 21370806, 79391536, 296760222, 1115327844, 4212125662, 15976390684, 60833679424, 232452408632, 891060970152, 3425639505624, 13204738280326, 51024408662932, 197607503526934
Offset: 0
Keywords
Links
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
Programs
-
Maple
gf:= (f-> f(f(x)))(x->(1+x-sqrt(1-2*x-3*x^2))/2): a:= n-> coeff(series(gf,x,n+1),x,n): seq(a(n), n=0..40); # Alois P. Heinz, Oct 06 2021
-
Mathematica
f[x_] := (1 + x - Sqrt[1 - 2*x - 3*x^2])/2; a[n_] := SeriesCoefficient[f[f[x]], {x, 0, n}]; Array[a, 25, 0] (* Amiram Eldar, Oct 06 2021 *)
-
PARI
f(x) = (1+x-sqrt(1-2*x-3*x^2))/2; my(x='x+O('x^30)); concat(0, Vec(f(f(x)))) \\ Michel Marcus, Oct 06 2021
Formula
G.f.: A(x) = F(F(x)), where F(x) is the g.f. of A086246.
Let G(x) = 2*M(x) - 1, where M(x) is the g.f. of A001006 (equivalently, x*G(x) is the g.f. of A007971). Then G(-A(x)) = 1/G(x).
A(-A(x)) = -x.
a(n) ~ ((1 + sqrt(3))^(n - 1/2) * 3^(n - 1/2)) / (sqrt(Pi) * n^(3/2) * 2^n). - Vaclav Kotesovec, Oct 07 2021
Comments