cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348220 Numerators of coefficients for numerical integration of certain differential systems (Array A(i,k) read by ascending antidiagonals).

Original entry on oeis.org

2, 2, 0, 2, 2, 1, 2, 4, 1, -1, 2, 6, 7, 0, 29, 2, 8, 19, 1, -1, -14, 2, 10, 37, 8, -1, 1, 1139, 2, 12, 61, 9, 29, 0, -37, -41, 2, 14, 91, 64, 269, -1, 1, 8, 32377, 2, 16, 127, 125, 1079, 14, 1, -1, -119, -3956, 2, 18, 169, 72, 2999, 33, -37, 0, 127, 9, 2046263
Offset: 0

Views

Author

Keywords

Comments

It can be noticed that the sequence A002681/A002682 shows as these 4 subsequences: A(i, 2i+2), -A(i, 2i+3), A(i+1, 2i+2) and A(i+2, 2i+3), for i >= 0.
Columns: A007395, A005843, A003215 (numerators).

Examples

			Array begins:
2, 0,    1/3,  -1/3,    29/90, -14/45,  1139/3780,   -41/140, ...
2, 2,    1/3,     0,    -1/90,   1/90,   -37/3780,     8/945, ...
2, 4,    7/3,   1/3,    -1/90,      0,      1/756,    -1/756, ...
2, 6,   19/3,   8/3,    29/90,  -1/90,      1/756,         0, ...
2, 8,   37/3,     9,   269/90,  14/45,   -37/3780,     1/756, ...
2, 10,  61/3,  64/3,  1079/90,  33/10,  1139/3780,    -8/945, ...
2, 12,  91/3, 125/3,  2999/90, 688/45, 13613/3780,    41/140, ...
2, 14, 127/3,    72,  6749/90, 875/18,  14281/756,   736/189, ...
2, 16, 169/3, 343/3, 13229/90,  618/5,  51031/756, 17225/756, ...
...
		

References

  • Paul Curtz, Intégration numérique des systèmes différentiels à conditions initiales. Note no. 12 du Centre de Calcul Scientifique de l'Armement, page 127, 1969, Arcueil. Later CELAR. Now DGA Maitrise de l'Information 35170 Bruz.

Crossrefs

Cf. A002681, A002682, A348221 (denominators).

Programs

  • Mathematica
    A[i_ /; i >= 0, k_ /; k >= 0] := A[i, k] = If[i == 0, (1/k!) Integrate[ Product[u+j, {j, -k+1, 0}], {u, -1, 1}], A[i-1, k-1] + A[i-1, k]];
    A[, ] = 0;
    Table[A[i-k, k] // Numerator, {i, 0, 10}, {k, 0, i}] // Flatten
  • PARI
    array(nn) = {my(m = matrix(nn, nn)); for (k=0, nn-1, m[1, k+1] = bestappr(intnum(x=-1, 1, prod(j=1-k, 0, x+j)))/k!; ); for (j=1, nn-1, for (k=0, nn-1, m[j+1, k+1] = if (k>0, m[j,k], 0) + m[j, k+1];);); apply(numerator, m);} \\ Michel Marcus, Oct 08 2021

Formula

Numerators of A(i,k) where:
A(i,k) = (1/k!)*Integral_(-1,1) Product(u+j, (j, -k+1 .. 0)) du for i=0.
A(i,k) = A(i-1, k-1) + A(i-1, k) for i>0.