cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A348300 a(n) is the largest number that is the digit sum of the square of an n-digit number.

Original entry on oeis.org

13, 31, 46, 63, 81, 97, 112, 130, 148, 162, 180, 193, 211, 229, 244, 262, 277, 297, 310, 331, 343, 360, 378, 396
Offset: 1

Views

Author

Keywords

Comments

18*n-a(n) appears to be nondecreasing. - Chai Wah Wu, Nov 18 2021
According to new data 18*n-a(n) sometimes decreases. - David A. Corneth, Feb 21 2024
a(n) is the digit sum of the square of the last n-digit integer in A067179. - Zhao Hui Du, Mar 04 2024
a(n) appears to be approximately equal to 16.5*n. - Zhining Yang, Mar 12 2024
a(n) modulo 9 is either 0, 1, 4 or 7. - Chai Wah Wu, Apr 04 2024

Examples

			a(3) = 46 because 46 is the largest digital sum encountered among the squares (that of 937) of all 3-digit numbers. Such maximal digital sum can be achieved by more than one square (squares of 836 and 883 also have digital sum 46). Largest of these is A348303.
		

Crossrefs

Programs

  • Mathematica
    Array[Max@ Map[Total@ IntegerDigits[#^2] &, Range[10^(# - 1), 10^# - 1]] &, 8] (* Michael De Vlieger, Oct 12 2021 *)
  • Python
    def A348300(n): return max(sum(int(d) for d in str(m**2)) for m in range(10**(n-1),10**n)) # Chai Wah Wu, Jun 26 2024
  • Sage
    def A348300(n):
        return max(sum((k^2).digits()) for k in (10^(n-1)..10^n-1))
    

Formula

a(n) = Max_{k=10^(n-1)..10^n-1} A004159(k).

Extensions

a(11) from Chai Wah Wu, Nov 18 2021
a(12)-a(13) from Martin Ehrenstein, Nov 20 2021
a(14)-a(24) from Zhao Hui Du, Feb 23 2024
Name edited by Jon E. Schoenfield, Mar 10 2024

A379298 Largest number k for which k^2 is n digits long and has the maximum sum of digits possible for such a square (A371728(n)).

Original entry on oeis.org

3, 7, 28, 83, 313, 937, 3114, 9417, 29614, 94863, 298327, 987917, 3162083, 9893887, 29983327, 99483667, 315432874, 994927133, 2999833327, 9486778167, 31464263856, 99497231067, 299998333327, 999949483667, 3160522105583, 9892825177313, 29999983333327
Offset: 1

Views

Author

Zhining Yang, Feb 05 2025

Keywords

Examples

			a(6) = 937 because among all 6-digit squares, 698896 = 836^2, 779689 = 883^2, 877969 = 937^2 have the maximum sum of digits 46 = A371728(6), and 937 is the largest.
		

Crossrefs

Other powers: A380052, A380797, A380566, A380193.

Programs

  • Mathematica
    a[n_] := Module[{s = Floor[Sqrt[(10^n - 1)]], max = 0},
       For[k = s, k >= Ceiling[Sqrt[10^(n - 1)]], k--, t = DigitSum[k^2];
        If[t > max, s = k; max = t]]; s];
    Table[a[n], {n, 30}]

Formula

Conjecture: a(2*n) = A348303(n).

A370522 a(n) is the least n-digit number whose square has the maximum sum of digits (A348300(n)).

Original entry on oeis.org

7, 83, 836, 8937, 94863, 987917, 9893887, 99477133, 994927133, 9380293167, 99497231067, 926174913167, 9892825177313, 89324067192437, 943291047332683, 9949874270443813, 83066231922477313, 707106074079263583, 9429681807356492126, 94180040294109027313, 888142995231510436417, 8882505274864168010583
Offset: 1

Views

Author

Zhining Yang, Feb 21 2024

Keywords

Comments

a(n) is the last n-digit term in A067179.
As the last two of the only nine known numbers whose square has a digit mean above 8.25 (see A164841), there is a high probability that a(30)=314610537013606681884298837387 and a(31)=9984988582817657883693383344833.

Examples

			a(3) = 836 because among all 3-digit numbers, 836 is the smallest whose square 698896 has the maximum sum of digits, 46 = A348300(3).
		

Crossrefs

Programs

  • Mathematica
    A348300={13,31,46,63,81,97,112,130,148,162,180};
    A370522[n_]:=Do[If[Total@IntegerDigits[k^2]==A348300[[n]],Return[k];],{k,10^(n-1),10^n-1}];
    Table[A370522[n],{n,8}]
  • Python
    def A370522(n):
        A348300=[0,13,31,46,63,81,97,112,130,148,162,180]
        for k in range(10**(n-1), 10**n):
            if sum(int(d) for d in str(k**2))==A348300[n]:
                return(k)
    print([A370522(n) for n in range(1,9)])

Extensions

a(11)-a(24) from Zhao Hui Du, Feb 23 2024
Showing 1-3 of 3 results.