cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348431 a(n) = (n')^(n'), where ' is the arithmetic derivative of n.

Original entry on oeis.org

1, 1, 1, 1, 256, 1, 3125, 1, 8916100448256, 46656, 823543, 1, 18446744073709551616, 1, 387420489, 16777216, 1461501637330902918203684832716283019655932542976, 1, 5842587018385982521381124421, 1, 1333735776850284124449081472843776, 10000000000, 302875106592253
Offset: 0

Views

Author

Wesley Ivan Hurt, Oct 18 2021

Keywords

Comments

a(p) = 1 for primes p since we have a(p) = (p')^(p') = 1^1 = 1.

Crossrefs

Programs

  • Maple
    a:= n-> (t-> t^t)(n*add(i[2]/i[1], i=ifactors(n)[2])):
    seq(a(n), n=0..23);  # Alois P. Heinz, Oct 20 2021
  • Mathematica
    Array[#^# &@ If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &, 19, 2] (* Michael De Vlieger, Oct 18 2021 *)
  • PARI
    ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    a(n) = my(d=ad(n)); d^d; \\ Michel Marcus, Oct 19 2021

Formula

a(n) = A000312(A003415(n)).