cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348479 Number of interval posets of permutations with n minimal elements.

Original entry on oeis.org

1, 1, 3, 12, 52, 240, 1160, 5795, 29681, 155025, 822563, 4421458, 24025518, 131759106, 728330062, 4053823980, 22699853940, 127790656040, 722835069984, 4106096464006, 23414579166050, 133984343279790, 769124367124594, 4427878983496972, 25559244203741228
Offset: 1

Views

Author

Mathilde Bouvel, Oct 21 2021

Keywords

Crossrefs

For interval posets which are in addition trees, see A054515.

Programs

  • Mathematica
    Join[{1},Table[Sum[Sum[Binomial[n+i-1,i]Binomial[i,k]Binomial[n-2k-2,i-1],{k,0,Min[i,(n-i-1)/2]}],{i,n-1}]/n,{n,2,25}]] (* Stefano Spezia, Oct 23 2021 *)
  • PARI
    a(n) = if (n==1, 1, (1/n) * sum(i=1, n-1, sum(k=0, min(i,(n-i-1)/2), binomial(n+i-1,i)* binomial(i,k)*binomial(n-2*k-2,i-1)))); \\ Michel Marcus, Oct 21 2021

Formula

a(n) = (1/n) * Sum_{i=1..(n-1)} Sum_{k=0..Min(i,(n-i-1)/2)} binomial(n+i-1,i)* binomial(i,k)*binomial(n-2k-2,i-1) if n>1. Proved in M. Bouvel, L. Cioni, B. Izart (Theorem 18).
G.f. A(z) = Sum_{n>=0} a(n)*z^n satisfies the equation A(z) = z + (A(z)^2 + A(z)^4)/(1-A(z)). Proved in M. Bouvel, L. Cioni, B. Izart (Equation (1) page 14).
Asymptotic behavior of a(n) is c*n^(-3/2)*r^n with c approximately 0.0622 and r approximately 6.1403. Proved in M. Bouvel, L. Cioni, B. Izart (Theorem 19).
D-finite with recurrence 177*n*(n-1)*(n-2) *(1884*n-6797)*a(n) -(n-1) *(n-2) *(2079652*n^2-10492117*n+10802220) *a(n-1) +6*(n-2) *(98404*n^3-611787*n^2+893503*n+124240) *a(n-2) +2*(-1206916*n^4+13262653*n^3-52943063*n^2+90096428*n-54243072) *a(n-3) +(-16564*n^4+1171171*n^3-12487565*n^2+47878166*n-62441016) *a(n-4) +3 *(3*n-14) *(n-5) *(388*n-1861) *(3*n-16)*a(n-5)=0. - R. J. Mathar, Nov 04 2021