A348488 Positive numbers whose square starts and ends with exactly one 4.
2, 22, 68, 202, 208, 218, 222, 642, 648, 652, 658, 672, 678, 682, 692, 698, 702, 2002, 2008, 2018, 2022, 2028, 2032, 2042, 2048, 2052, 2058, 2068, 2072, 2078, 2082, 2092, 2122, 2128, 2132, 2142, 2148, 2152, 2158, 2168, 2172, 2178, 2182, 2192, 2198, 2202, 2208, 2218, 2222, 2228
Offset: 1
Examples
22 is a term since 22^2 = 484. 638 is not a term since 638^2 = 407044. 668 is not a term since 668^2 = 446224.
Crossrefs
Programs
-
Magma
[2] cat [n:n in [4..2300]|Intseq(n*n)[1] eq 4 and Intseq(n*n)[#Intseq(n*n)] eq 4 and Intseq(n*n)[-1+#Intseq(n*n)] ne 4 and Intseq(n*n)[2] ne 4]; // Marius A. Burtea, Oct 24 2021
-
Mathematica
Join[{2}, Select[Range[10, 2000], (d = IntegerDigits[#^2])[[1]] == d[[-1]] == 4 && d[[-2]] != 4 && d[[2]] != 4 &]] (* Amiram Eldar, Oct 24 2021 *)
-
PARI
isok(k) = my(d=digits(sqr(k))); (d[1]==4) && (d[#d]==4) && if (#d>2, (d[2]!=4) && (d[#d-1]!=4), 1); \\ Michel Marcus, Oct 24 2021
-
Python
from itertools import count, takewhile def ok(n): s = str(n*n); return len(s.rstrip("4")) == len(s.lstrip("4")) == len(s)-1 def aupto(N): r = takewhile(lambda x: x<=N, (10*i+d for i in count(0) for d in [2, 8])) return [k for k in r if ok(k)] print(aupto(2228)) # Michael S. Branicky, Oct 24 2021
Comments