cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348490 Positive numbers whose square starts and ends with exactly one 6.

Original entry on oeis.org

26, 246, 254, 256, 264, 776, 784, 786, 794, 796, 804, 806, 824, 826, 834, 836, 2454, 2456, 2464, 2466, 2474, 2476, 2484, 2486, 2494, 2496, 2504, 2506, 2514, 2516, 2524, 2526, 2534, 2536, 2544, 2546, 2554, 2556, 2564, 2566, 2594, 2596, 2604, 2606, 2614, 2616, 2624, 2626, 2634, 2636, 2644, 7746
Offset: 1

Views

Author

Bernard Schott, Oct 29 2021

Keywords

Comments

When a square ends with 6, it ends with only one 6.
From Marius A. Burtea, Oct 30 2021 : (Start)
The sequence is infinite because the numbers 806, 8006, 80006, ..., 8*10^k + 6, k >= 2, are terms with squares 649636, 64096036, 6400960036, 640009600036, ..., 64*10^(2*k) + 96*10^k + 36, k >= 2.
Numbers 796, 7996, 79996, 799996, 7999996, 79999996, ..., 10^k*8 - 4, k >= 2, are terms and have no digits 0, because their squares are 633616, 63936016, 6399360016, 639993600016, 63999936000016, 6399999360000016, ....
Also 794, 7994, 79994, 799994, ..., (8*10^k - 6), k >= 2, are terms and have no digits 0, because their squares are 630436, 63904036, 6399040036, 639990400036, 63999904000036, 6399999040000036, ... (End)

Examples

			26^2 = 676, hence 26 is a term.
814^2 = 662596, hence 814 is not a term.
		

Crossrefs

Cf. A045789, A045860, A273373 (squares ending with 6).
Similar to: A348487 (k=1), A348488 (k=4), A348489 (k=5), this sequence (k=6), A348491 (k=9).
Subsequence of A305719.

Programs

  • Magma
    [n:n in [4..7500]|Intseq(n*n)[1] eq 6 and Intseq(n*n)[#Intseq(n*n)] eq 6 and Intseq(n*n)[-1+#Intseq(n*n)] ne 6 ]; // Marius A. Burtea, Oct 30 2021
  • Mathematica
    Select[Range[10, 7750], (d = IntegerDigits[#^2])[[1]] == d[[-1]] == 6 && d[[2]] != 6 &] (* Amiram Eldar, Oct 30 2021 *)
  • PARI
    isok(k) = my(d=digits(sqr(k))); (d[1]==6) && (d[#d]==6) && if (#d>2, (d[2]!=6) && (d[#d-1]!=6), 1); \\ Michel Marcus, Oct 30 2021
    
  • Python
    from itertools import count, takewhile
    def ok(n):
      s = str(n*n); return len(s.rstrip("6")) == len(s.lstrip("6")) == len(s)-1
    def aupto(N):
      r = takewhile(lambda x: x<=N, (10*i+d for i in count(0) for d in [4, 6]))
      return [k for k in r if ok(k)]
    print(aupto(2644)) # Michael S. Branicky, Oct 29 2021