A348529 Number of compositions (ordered partitions) of n into two or more triangular numbers.
0, 0, 1, 1, 3, 4, 6, 11, 16, 25, 39, 61, 94, 147, 227, 350, 546, 846, 1309, 2030, 3147, 4875, 7558, 11715, 18154, 28136, 43609, 67586, 104747, 162346, 251610, 389958, 604381, 936699, 1451743, 2249991, 3487152, 5404570, 8376292, 12982016, 20120202, 31183350, 48329596, 74903735
Offset: 0
Keywords
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add( `if`(issqr(8*j+1), b(n-j), 0), j=1..n)) end: a:= n-> b(n)-`if`(issqr(8*n+1), 1, 0): seq(a(n), n=0..43); # Alois P. Heinz, Oct 21 2021
-
Mathematica
b[n_] := b[n] = If[n == 0, 1, Sum[ If[IntegerQ@ Sqrt[8*j + 1], b[n - j], 0], {j, 1, n}]]; a[n_] := b[n] - If[IntegerQ@ Sqrt[8*n + 1], 1, 0]; Table[a[n], {n, 0, 43}] (* Jean-François Alcover, Mar 01 2022, after Alois P. Heinz *)