cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348545 Positive integers with final digit 9 that are equal to the product of two integers ending with the same digit.

Original entry on oeis.org

9, 39, 49, 69, 99, 119, 129, 159, 169, 189, 219, 249, 259, 279, 289, 299, 309, 329, 339, 369, 399, 429, 459, 469, 489, 519, 529, 539, 549, 559, 579, 609, 629, 639, 669, 679, 689, 699, 729, 749, 759, 789, 799, 819, 849, 879, 889, 909, 939, 949, 959, 969, 989, 999
Offset: 1

Views

Author

Stefano Spezia, Oct 22 2021

Keywords

Comments

Union of A346950 and A348054.

Examples

			9 = 3*3, 39 = 3*13, 49 = 7*7, 69 = 3*23, 99 = 3*33, 119 = 7*17, 129 = 3*43, 159 = 3*53, 169 = 13*13, 189 = 3*63 = 7*27, ...
		

Crossrefs

Cf. A017377 (supersequence), A346950, A348054, A348547.

Programs

  • Mathematica
    a={}; For[n=0, n<=100, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3 && 10*n+9>Max[a] || Mod[10*n+9, 10*k+7]==0 && Mod[(10*n+9)/(10*k+7), 10]==7 && 10*n+9>Max[a], AppendTo[a, 10*n+9]]]]; a
  • PARI
    isok(m) = ((m%10) == 9) && sumdiv(m, d, (d % 10) == (m/d % 10)); \\ Michel Marcus, Oct 22 2021
    
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)) | set(a*b for a in range(7, lim//7+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(999)) # Michael S. Branicky, Oct 22 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.