cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348622 Triangular array read by rows: T(n,k) is the number of periodic n X n matrices over GF(2) having rank k, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 6, 6, 1, 28, 168, 168, 1, 120, 3360, 20160, 20160, 1, 496, 59520, 1666560, 9999360, 9999360, 1, 2016, 999936, 119992320, 3359784960, 20158709760, 20158709760, 1, 8128, 16386048, 8127479808, 975297576960, 27308332154880, 163849992929280, 163849992929280
Offset: 0

Views

Author

Geoffrey Critzer, Oct 25 2021

Keywords

Comments

A matrix T is periodic if and only image(T) = image(T^2). Cf. A348015.

Examples

			Triangle begins:
  1;
  1,   1;
  1,   6,     6;
  1,  28,   168,     168;
  1, 120,  3360,   20160,   20160;
  1, 496, 59520, 1666560, 9999360, 9999360;
  ...
		

Crossrefs

Cf. A348015 (row sums).
Main diagonal gives A002884.

Programs

  • Maple
    b:= proc(n) option remember; mul(2^n-2^i, i=0..n-1) end:
    T:= (n, k)-> b(n)/b(n-k):
    seq(seq(T(n, k), k=0..n), n=0..8);  # Alois P. Heinz, Oct 30 2021
  • Mathematica
    nn = 7; q = 2; b[p_, i_] := Count[p, i];s[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] := Product[Product[q^(s[p, i] deg) - q^((s[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; \[Nu] = Table[1/n Sum[MoebiusMu[n/m] q^m, {m, Divisors[n]}], {n, 1,nn}]; l[greatestpart_]:=Level[Table[IntegerPartitions[n, {0, n}, Range[greatestpart]], {n, 0, nn}], {2}];
    g1[u_, v_, deg_] :=Total[Map[v^(Length[#]) u^(deg Total[#])/aut[deg, #] &, l[1]]];
    g2[u_, v_, deg_] := Total[Map[v^Length[#] u^(deg Total[#])/aut[deg, #] &,l[nn]]];
    Map[Reverse, Map[Select[#, # > 0 &] &,Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[g1[u, v, 1] g2[u, 1, 1]^(q - 1) Product[g2[u, 1, d]^\[Nu][[d]], {d, 2, nn}], {u, 0, nn}], {u,v}]]] // Flatten

Formula

T(n,k) = A002884(n)/A002884(n-k).
T(n,k) = T(n,k-1)*T(n-k+1,1).
Sum_{n>=0} Sum_{k=0..n} T(n,k)*y^k*x^n/B(n) = e(x)*g(y*x) where e(x) = Sum_{n>=0} x^n/B(n), g(x) = Sum_{n>=0} Product_{i=0..n-1} (q^n-q^i)*x^n/B(n), B(n) = Product_{i=0..n-1} (q^n-q^i)/(q-1)^n and q=2. - Geoffrey Critzer, Jan 03 2025

Extensions

Title improved by Geoffrey Critzer, Sep 16 2022