A348725 Decimal expansion of the absolute value of one of the negative roots of Shanks' simplest cubic associated with the prime p = 19.
1, 2, 8, 5, 1, 4, 2, 4, 8, 1, 8, 2, 9, 7, 8, 5, 3, 6, 4, 3, 9, 4, 1, 1, 9, 8, 7, 3, 5, 3, 0, 6, 2, 7, 4, 1, 3, 4, 2, 6, 7, 8, 0, 9, 2, 5, 7, 2, 2, 6, 1, 6, 9, 4, 1, 5, 2, 5, 6, 6, 7, 0, 6, 9, 8, 6, 1, 9, 9, 1, 7, 2, 1, 9, 7, 9, 5, 2, 3, 0, 5, 0, 7, 0, 3, 8, 0, 4, 2, 3, 8, 9, 7, 4, 2, 9, 8, 7, 3, 9
Offset: 1
Examples
1.28514248182978536439411987353062741342678092572261 ...
Links
- T. W. Cusick and Lowell Schoenfeld, A table of fundamental pairs of units in totally real cubic fields, Math. Comp. 48 (1987), 147-158 (see case 9 in the table)
- D. Shanks, The simplest cubic fields, Math. Comp., 28 (1974), 1137-1152
Programs
-
Maple
evalf(sin(Pi/19)*sin(7*Pi/19)*sin(8*Pi/19)/(sin(2*Pi/19)*sin(3*Pi/19)*sin(5*Pi/19)), 100);
-
Mathematica
RealDigits[Sin[Pi/19]*Sin[7*Pi/19]*Sin[8*Pi/19]/(Sin[2*Pi/19]*Sin[3*Pi/19]*Sin[5*Pi/19]), 10, 100][[1]] (* Amiram Eldar, Nov 08 2021 *)
Formula
|r_2| = sin(Pi/19)*sin(7*Pi/19)*sin(8*Pi/19)/(sin(2*Pi/19)*sin(3*Pi/19)* sin(5*Pi/19)) = 1/(8*cos(Pi/19)*cos(7*Pi/19)*cos(8*Pi/19)).
|r_2| = Product_{n >= 0} (19*n+1)*(19*n+7)*(19*n+8)*(19*n+11)*(19*n+12)*(19*n+18)/ ( (19*n+2)*(19*n+3)*(19*n+5)*(19*n+14)*(19*n+16)*(19*n+17) ).
|r_2| = 2*(cos(Pi/19) + cos(7*Pi/19) - cos(8*Pi/19)) - 1.
Let z = exp(2*Pi*i/19). Then
|r_2| = abs( (1 - z)*(1 - z^7)*(1 - z^8)/((1 - z^2)*(1 - z^3)*(1 - z^5)) ).
Note: C = {1, 7, 8, 11, 12, 18} is the subgroup of nonzero cubic residues in the finite field Z_19 with cosets 2*C = {2, 3, 5, 14, 16, 17} and 4*C = {4, 6, 9, 10, 13, 15}.
Equals -1 + (-1)^(1/19) + (-1)^(7/19) - (-1)^(8/19) + (-1)^(11/19) - (-1)^(12/19) - (-1)^(18/19). - Peter Luschny, Nov 08 2021
Comments