A348723 Decimal expansion of the positive root of Shanks' simplest cubic associated with the prime p = 19.
3, 5, 0, 7, 0, 1, 8, 6, 4, 4, 0, 9, 2, 9, 7, 6, 2, 9, 8, 6, 6, 0, 7, 9, 9, 9, 2, 3, 7, 1, 5, 6, 7, 8, 0, 2, 9, 0, 2, 5, 9, 7, 6, 4, 2, 0, 1, 3, 0, 3, 6, 9, 6, 7, 5, 1, 2, 6, 5, 8, 2, 1, 7, 8, 3, 5, 2, 9, 7, 6, 9, 6, 4, 8, 2, 1, 0, 1, 9, 9, 7, 1, 5, 7, 6, 0, 0, 3, 4, 0, 8, 6, 1, 9, 4, 0, 9, 0, 7, 1, 5
Offset: 1
Examples
3.50701864409297629866079992371567802902597642013036...
Links
- T. W. Cusick and Lowell Schoenfeld, A table of fundamental pairs of units in totally real cubic fields, Math. Comp. 48 (1987), 147-158
- D. Shanks, The simplest cubic fields, Math. Comp., 28 (1974), 1137-1152
Programs
-
Maple
evalf(sin(4*Pi/19)*sin(6*Pi/19)*sin(9*Pi/19)/(sin(Pi/19)*sin(7*Pi/19)*sin(8*Pi/19)), 100);
-
Mathematica
RealDigits[Sin[4*Pi/19]*Sin[6*Pi/19]*Sin[9*Pi/19]/(Sin[Pi/19]*Sin[7*Pi/19]*Sin[8*Pi/19]), 10, 100][[1]] (* Amiram Eldar, Nov 08 2021 *)
-
PARI
sin(4*Pi/19)*sin(6*Pi/19)*sin(9*Pi/19)/(sin(Pi/19)*sin(7*Pi/19)*sin(8*Pi/19)) \\ Michel Marcus, Nov 08 2021
Formula
r_0 = 2*(cos(4*Pi/19) + cos(6*Pi/19) - cos(9*Pi/19)) + 1.
r_0 = sin(4*Pi/19)*sin(6*Pi/19)*sin(9*Pi/19)/(sin(Pi/19)*sin(7*Pi/19)*sin(8*Pi/19)).
r_0 = 1/(8*cos(4*Pi/19)*cos(6*Pi/19)*cos(9*Pi/19)).
r_0 = Product_{n >= 0} (19*n+4)*(19*n+6)*(19*n+9)*(19*n+10)*(19*n+13)*(19*n+15)/( (19*n+1)*(19*n+7)*(19*n+8)*(19*n+11)*(19*n+12)*(19*n+18) ).
r_1 = - sin(2*Pi/19)*sin(3*Pi/19)*sin(5*Pi/19)/(sin(4*Pi/19)*sin(6*Pi/19)*sin(9*Pi/19)) = - 1/(8*cos(2*Pi/19)*cos(3*Pi/19)*cos(5*Pi/19)).
r_1 = - Product_{n >= 0} (19*n+2)*(19*n+3)*(19*n+5)*(19*n+14)*(19*n+16)*(19*n+17)/( (19*n+4)*(19*n+6)*(19*n+9)*(19*n+10)*(19*n+13)*(19*n+15) ).
r_2 = - sin(Pi/19)*sin(7*Pi/19)* sin(8*Pi/19)/(sin(2*Pi/19)*sin(3*Pi/19)*sin(5*Pi/19)) = - 1/(8*cos(Pi/19)*cos(7*Pi/19)*cos(8*Pi/19)).
r_2 = - Product_{n >= 0} (19*n+1)*(19*n+7)*(19*n+8)*(19*n+11)*(19*n+12)*(19*n+18)/( (19*n+2)*(19*n+3)*(19*n+5)*(19*n+14)*(19*n+16)*(19*n+17) ).
Let z = exp(2*Pi*i/19). Then
r_0 = abs( (1 - z^4)*(1 - z^6)*(1 - z^9)/((1 - z)*(1 - z^7)*(1 - z^8)) ).
Note: C = {1, 7, 8, 11, 12, 18} is the subgroup of nonzero cubic residues in the finite field Z_19 with cosets 2*C = {2, 3, 5, 14, 16, 17} and 4*C = {4, 6, 9, 10, 13, 15}.
Comments