cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A348723 Decimal expansion of the positive root of Shanks' simplest cubic associated with the prime p = 19.

Original entry on oeis.org

3, 5, 0, 7, 0, 1, 8, 6, 4, 4, 0, 9, 2, 9, 7, 6, 2, 9, 8, 6, 6, 0, 7, 9, 9, 9, 2, 3, 7, 1, 5, 6, 7, 8, 0, 2, 9, 0, 2, 5, 9, 7, 6, 4, 2, 0, 1, 3, 0, 3, 6, 9, 6, 7, 5, 1, 2, 6, 5, 8, 2, 1, 7, 8, 3, 5, 2, 9, 7, 6, 9, 6, 4, 8, 2, 1, 0, 1, 9, 9, 7, 1, 5, 7, 6, 0, 0, 3, 4, 0, 8, 6, 1, 9, 4, 0, 9, 0, 7, 1, 5
Offset: 1

Views

Author

Peter Bala, Oct 31 2021

Keywords

Comments

Let a be an integer and let p be a prime of the form a^2 + 3*a + 9 (see A005471). Shanks introduced a family of cyclic cubic fields generated by the roots of the polynomial x^3 - a*x^2 - (a + 3)*x - 1.
In the case a = 2, corresponding to the prime p = 19, Shanks' cyclic cubic is x^3 - 2*x^2 - 5*x - 1 of discriminant 19^2. The polynomial has three real roots, one positive and two negative. Let r_0 = 3.507018644... denote the positive root. The other roots are r_1 = - 1/(1 + r_0) = - 0.2218761622... and r_2 = - 1/(1 + r_1) = - 1.2851424818.... See A348724 and A348725.
The quadratic mapping z -> z^2 - 3*z - 2 cyclically permutes the roots of the cubic: the mapping z -> - z^2 + 2*z + 4 gives the inverse cyclic permutation of the three roots.
The algebraic number field Q(r_0) is a totally real cubic field of class number 1 and discriminant equal to 19^2. The Galois group of Q(r_0) over Q is a cyclic group of order 3. The real numbers r_0 and 1 + r_0 are two independent fundamental units of the field Q(r_0). See Shanks. In Cusick and Schoenfeld, r_0 and r_1 (denoted there by E_1 and E_2) are taken as a fundamental pair of units (see case 9 in the table).

Examples

			3.50701864409297629866079992371567802902597642013036...
		

Crossrefs

Programs

  • Maple
    evalf(sin(4*Pi/19)*sin(6*Pi/19)*sin(9*Pi/19)/(sin(Pi/19)*sin(7*Pi/19)*sin(8*Pi/19)), 100);
  • Mathematica
    RealDigits[Sin[4*Pi/19]*Sin[6*Pi/19]*Sin[9*Pi/19]/(Sin[Pi/19]*Sin[7*Pi/19]*Sin[8*Pi/19]), 10, 100][[1]] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    sin(4*Pi/19)*sin(6*Pi/19)*sin(9*Pi/19)/(sin(Pi/19)*sin(7*Pi/19)*sin(8*Pi/19)) \\ Michel Marcus, Nov 08 2021

Formula

r_0 = 2*(cos(4*Pi/19) + cos(6*Pi/19) - cos(9*Pi/19)) + 1.
r_0 = sin(4*Pi/19)*sin(6*Pi/19)*sin(9*Pi/19)/(sin(Pi/19)*sin(7*Pi/19)*sin(8*Pi/19)).
r_0 = 1/(8*cos(4*Pi/19)*cos(6*Pi/19)*cos(9*Pi/19)).
r_0 = Product_{n >= 0} (19*n+4)*(19*n+6)*(19*n+9)*(19*n+10)*(19*n+13)*(19*n+15)/( (19*n+1)*(19*n+7)*(19*n+8)*(19*n+11)*(19*n+12)*(19*n+18) ).
r_1 = - sin(2*Pi/19)*sin(3*Pi/19)*sin(5*Pi/19)/(sin(4*Pi/19)*sin(6*Pi/19)*sin(9*Pi/19)) = - 1/(8*cos(2*Pi/19)*cos(3*Pi/19)*cos(5*Pi/19)).
r_1 = - Product_{n >= 0} (19*n+2)*(19*n+3)*(19*n+5)*(19*n+14)*(19*n+16)*(19*n+17)/( (19*n+4)*(19*n+6)*(19*n+9)*(19*n+10)*(19*n+13)*(19*n+15) ).
r_2 = - sin(Pi/19)*sin(7*Pi/19)* sin(8*Pi/19)/(sin(2*Pi/19)*sin(3*Pi/19)*sin(5*Pi/19)) = - 1/(8*cos(Pi/19)*cos(7*Pi/19)*cos(8*Pi/19)).
r_2 = - Product_{n >= 0} (19*n+1)*(19*n+7)*(19*n+8)*(19*n+11)*(19*n+12)*(19*n+18)/( (19*n+2)*(19*n+3)*(19*n+5)*(19*n+14)*(19*n+16)*(19*n+17) ).
Let z = exp(2*Pi*i/19). Then
r_0 = abs( (1 - z^4)*(1 - z^6)*(1 - z^9)/((1 - z)*(1 - z^7)*(1 - z^8)) ).
Note: C = {1, 7, 8, 11, 12, 18} is the subgroup of nonzero cubic residues in the finite field Z_19 with cosets 2*C = {2, 3, 5, 14, 16, 17} and 4*C = {4, 6, 9, 10, 13, 15}.

A348725 Decimal expansion of the absolute value of one of the negative roots of Shanks' simplest cubic associated with the prime p = 19.

Original entry on oeis.org

1, 2, 8, 5, 1, 4, 2, 4, 8, 1, 8, 2, 9, 7, 8, 5, 3, 6, 4, 3, 9, 4, 1, 1, 9, 8, 7, 3, 5, 3, 0, 6, 2, 7, 4, 1, 3, 4, 2, 6, 7, 8, 0, 9, 2, 5, 7, 2, 2, 6, 1, 6, 9, 4, 1, 5, 2, 5, 6, 6, 7, 0, 6, 9, 8, 6, 1, 9, 9, 1, 7, 2, 1, 9, 7, 9, 5, 2, 3, 0, 5, 0, 7, 0, 3, 8, 0, 4, 2, 3, 8, 9, 7, 4, 2, 9, 8, 7, 3, 9
Offset: 1

Views

Author

Peter Bala, Oct 31 2021

Keywords

Comments

Let a be an integer and let p be a prime of the form a^2 + 3*a + 9 (see A005471). Shanks introduced a family of cyclic cubic fields generated by the roots of the polynomial x^3 - a*x^2 - (a + 3)*x - 1.
In the case a = 2, corresponding to the prime p = 19, Shanks' cyclic cubic is x^3 - 2*x^2 - 5*x - 1 of discriminant 19^2. The polynomial has three real roots, one positive and two negative. Let r_0 = 3.507018644... denote the positive root. The other roots are r_1 = - 1/(1 + r_0) = - 0.2218761622... and r_2 = - 1/(1 + r_1) = - 1.2851424818.... See A348723 (r_0) and A348724 (|r_1|).
Here we consider the absolute value of the root r_2.

Examples

			1.28514248182978536439411987353062741342678092572261 ...
		

Crossrefs

Programs

  • Maple
    evalf(sin(Pi/19)*sin(7*Pi/19)*sin(8*Pi/19)/(sin(2*Pi/19)*sin(3*Pi/19)*sin(5*Pi/19)), 100);
  • Mathematica
    RealDigits[Sin[Pi/19]*Sin[7*Pi/19]*Sin[8*Pi/19]/(Sin[2*Pi/19]*Sin[3*Pi/19]*Sin[5*Pi/19]), 10, 100][[1]] (* Amiram Eldar, Nov 08 2021 *)

Formula

|r_2| = sin(Pi/19)*sin(7*Pi/19)*sin(8*Pi/19)/(sin(2*Pi/19)*sin(3*Pi/19)* sin(5*Pi/19)) = 1/(8*cos(Pi/19)*cos(7*Pi/19)*cos(8*Pi/19)).
|r_2| = Product_{n >= 0} (19*n+1)*(19*n+7)*(19*n+8)*(19*n+11)*(19*n+12)*(19*n+18)/ ( (19*n+2)*(19*n+3)*(19*n+5)*(19*n+14)*(19*n+16)*(19*n+17) ).
|r_2| = 2*(cos(Pi/19) + cos(7*Pi/19) - cos(8*Pi/19)) - 1.
Let z = exp(2*Pi*i/19). Then
|r_2| = abs( (1 - z)*(1 - z^7)*(1 - z^8)/((1 - z^2)*(1 - z^3)*(1 - z^5)) ).
Note: C = {1, 7, 8, 11, 12, 18} is the subgroup of nonzero cubic residues in the finite field Z_19 with cosets 2*C = {2, 3, 5, 14, 16, 17} and 4*C = {4, 6, 9, 10, 13, 15}.
Equals -1 + (-1)^(1/19) + (-1)^(7/19) - (-1)^(8/19) + (-1)^(11/19) - (-1)^(12/19) - (-1)^(18/19). - Peter Luschny, Nov 08 2021
Showing 1-2 of 2 results.