cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A364432 G.f. satisfies A(x) = 1 + x*A(x)*(2 + A(x)^3).

Original entry on oeis.org

1, 3, 18, 162, 1728, 20169, 249318, 3207600, 42500700, 576012060, 7947785448, 111269613006, 1576658688480, 22568473199358, 325855352769588, 4740157737123696, 69405108247439676, 1022070746845708740, 15127922880893671704, 224931239520535651464
Offset: 0

Views

Author

Seiichi Manyama, Jul 24 2023

Keywords

Crossrefs

Programs

  • Maple
    A364432 := proc(n)
        add(2^(n-k)* binomial(n,k) * binomial(n+3*k+1,n) / (n+3*k+1),k=0..n) ;
    end proc:
    seq(A364432(n),n=0..70); # R. J. Mathar, Jul 25 2023
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(n, k)*binomial(n+3*k+1, n)/(n+3*k+1));

Formula

a(n) = Sum_{k=0..n} 2^(n-k) * binomial(n,k) * binomial(n+3*k+1,n) / (n+3*k+1).
D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*a(n) +2*(-74*n^3 -375*n^2+ 665*n -252)*a(n-1) +12*(-337*n^3 +1941*n^2 -2984*n +1092)*a(n-2) +144*(-70*n^3 +861*n^2 -3347*n +4152)*a(n-3) +432*(n-4)*(31*n^2 -314*n +735)*a(n-4) -2592*(10*n-51) *(n-4)*(n-5)*a(n-5) +15552*(n-5)*(n-6) *(n-4)*a(n-6)=0. - R. J. Mathar, Jul 25 2023

A349514 G.f. A(x) satisfies: A(x) = (1 + x * A(x)^3) / (1 - 3 * x).

Original entry on oeis.org

1, 4, 24, 192, 1792, 18240, 196224, 2194176, 25247232, 296979456, 3555010560, 43165900800, 530362220544, 6581594275840, 82373440339968, 1038579580796928, 13179023462498304, 168183976239562752, 2157085003249876992, 27790652486543474688, 359485965093121818624
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = (1 + x A[x]^3)/(1 - 3 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = 3 a[n - 1] + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 20}]
    Table[Sum[Binomial[n + 2 k, 3 k] Binomial[3 k, k] 3^(n - k)/(2 k + 1), {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k,3*k) * binomial(3*k,k) * 3^(n-k) / (2*k+1)) \\ Andrew Howroyd, Nov 20 2021

Formula

a(0) = 1; a(n) = 3 * a(n-1) + Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} binomial(n+2*k,3*k) * binomial(3*k,k) * 3^(n-k) / (2*k+1).
a(n) ~ (3/4*(7 + (3*(69 + 16*sqrt(3)))^(1/3) + (3*(69 - 16*sqrt(3)))^(1/3)))^n / (sqrt((4 - (2 + sqrt(3))^(1/3) - (2 - sqrt(3))^(1/3)) * Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 21 2021

A349515 G.f. A(x) satisfies: A(x) = (1 + x * A(x)^3) / (1 - 4 * x).

Original entry on oeis.org

1, 5, 35, 320, 3415, 39805, 490660, 6288120, 82935615, 1118324655, 15346920635, 213637539620, 3009391426340, 42817011909180, 614411343795960, 8881874095390320, 129224763346019215, 1890813939312392755, 27805864640943573385, 410748152876389349720
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; A[] = 0; Do[A[x] = (1 + x A[x]^3)/(1 - 4 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = 4 a[n - 1] + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 19}]
    Table[Sum[Binomial[n + 2 k, 3 k] Binomial[3 k, k] 4^(n - k)/(2 k + 1), {k, 0, n}], {n, 0, 19}]
  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k,3*k) * binomial(3*k,k) * 4^(n-k) / (2*k+1)) \\ Andrew Howroyd, Nov 20 2021

Formula

a(0) = 1; a(n) = 4 * a(n-1) + Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} binomial(n+2*k,3*k) * binomial(3*k,k) * 4^(n-k) / (2*k+1).
a(n) ~ 2^(4*n + 1/2) / (sqrt(3*Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 21 2021
Showing 1-3 of 3 results.