cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348864 a(n) is the number of multiplications required to compute the permanent of general n X n matrices using trellis method with normalization.

Original entry on oeis.org

0, 4, 12, 32, 70, 162, 350, 800, 1746, 3950, 8602, 19164, 41392, 90846, 194490, 421568, 895594, 1922022, 4057298, 8638580, 18140640, 38378054, 80244562, 168877272, 351827100, 737208082, 1531123830, 3196464740, 6621247636, 13779365430, 28477354354, 59102191488, 121898268954
Offset: 1

Views

Author

Stefano Spezia, Nov 02 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n 2^(n-1)-Ceiling[n/2]Binomial[n,Floor[n/2]]+n^2-n; Array[a,33]
  • PARI
    a(n) = n*2^(n-1) - ceil(n/2)*binomial(n, floor(n/2)) + n^2 - n; \\ Michel Marcus, Nov 03 2021

Formula

a(n) = n*2^(n-1) - ceiling(n/2)*binomial(n, floor(n/2)) + n^2 - n (see Theorem 6, p. 11 in Kiah et al.).
a(n) = A001787(n) - A100071(n) + A002378(n-1).
O.g.f.: x*(1/(1 - 2*x)^2 + 2*x/(1 - x)^3 - 1/((1 - 2*x)*sqrt(1 - 4*x^2))).
E.g.f.: exp(x)*x*(exp(x) + x) - (1 + x)*BesselI(1, 2*x) - x*BesselI(2, 2*x).
D-finite with recurrence (n-1)*(n-2)*(n-4)*(3*n-23)*a(n) -3*(n -2)*(3*n^3-34*n^2+91*n-20)*a(n-1) -2*(n-1)*(n-3)*(3*n^2 -47*n+164)*a(n-2) +12*(3*n-22)*(n-1)*(n-2)*(n-4)*a(n-3) -8*(3*n-20)*(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Mar 06 2022