A348864 a(n) is the number of multiplications required to compute the permanent of general n X n matrices using trellis method with normalization.
0, 4, 12, 32, 70, 162, 350, 800, 1746, 3950, 8602, 19164, 41392, 90846, 194490, 421568, 895594, 1922022, 4057298, 8638580, 18140640, 38378054, 80244562, 168877272, 351827100, 737208082, 1531123830, 3196464740, 6621247636, 13779365430, 28477354354, 59102191488, 121898268954
Offset: 1
Keywords
Links
- Han Mao Kiah, Alexander Vardy and Hanwen Yao, Computing Permanents on a Trellis, arXiv:2107.07377 [cs.IT], 2021.
Programs
-
Mathematica
a[n_]:=n 2^(n-1)-Ceiling[n/2]Binomial[n,Floor[n/2]]+n^2-n; Array[a,33]
-
PARI
a(n) = n*2^(n-1) - ceil(n/2)*binomial(n, floor(n/2)) + n^2 - n; \\ Michel Marcus, Nov 03 2021
Formula
a(n) = n*2^(n-1) - ceiling(n/2)*binomial(n, floor(n/2)) + n^2 - n (see Theorem 6, p. 11 in Kiah et al.).
O.g.f.: x*(1/(1 - 2*x)^2 + 2*x/(1 - x)^3 - 1/((1 - 2*x)*sqrt(1 - 4*x^2))).
E.g.f.: exp(x)*x*(exp(x) + x) - (1 + x)*BesselI(1, 2*x) - x*BesselI(2, 2*x).
D-finite with recurrence (n-1)*(n-2)*(n-4)*(3*n-23)*a(n) -3*(n -2)*(3*n^3-34*n^2+91*n-20)*a(n-1) -2*(n-1)*(n-3)*(3*n^2 -47*n+164)*a(n-2) +12*(3*n-22)*(n-1)*(n-2)*(n-4)*a(n-3) -8*(3*n-20)*(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Mar 06 2022