A348891 Minimal absolute value of determinant of a nonsingular n X n symmetric Toeplitz matrix using the first n prime numbers.
1, 2, 5, 12, 11, 22, 84, 1368, 73, 589, 15057, 2520, 28209
Offset: 0
Examples
a(3) = 12: 2 3 5 3 2 3 5 3 2 a(4) = 11: 2 5 3 7 5 2 5 3 3 5 2 5 7 3 5 2 a(5) = 22: 2 3 5 7 11 3 2 3 5 7 5 3 2 3 5 7 5 3 2 3 11 7 5 3 2
Links
- Lucas A. Brown, A348891+A350955+6.py
- Wikipedia, Toeplitz Matrix
Programs
-
Python
from itertools import permutations from sympy import Matrix, prime def A348891(n): return min(d for d in (abs(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).det()) for p in permutations(prime(i) for i in range(1,n+1))) if d > 0) # Chai Wah Wu, Jan 28 2022
Extensions
a(9) from Alois P. Heinz, Jan 28 2022
a(10)-a(12) from Lucas A. Brown, Aug 31 2022