cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348893 a(n) = 840*(2*n)!/((n + 4)!*n!).

Original entry on oeis.org

35, 14, 14, 20, 35, 70, 154, 364, 910, 2380, 6460, 18088, 52003, 152950, 458850, 1400700, 4342170, 13646820, 43421700, 139704600, 454039950, 1489251036, 4925984196, 16419947320, 55124108860, 186281471320, 633357002488, 2165672331088, 7444498638115, 25717358931670, 89254363351090
Offset: 0

Views

Author

Karol A. Penson, Nov 02 2021

Keywords

Crossrefs

Programs

  • Maple
    seq(840*(2*n)!/((n + 4)!*n!),n=0..30)
  • Mathematica
    a[n_] := 4^(n + 4) Hypergeometric2F1[9/2, 1/2 - n, 11/2, 1] / (9 Pi);
    Table[a[n], {n, 0, 30}] (* Peter Luschny, Nov 03 2021 *)
  • PARI
    a(n)=35*binomial(2*n,n)/binomial(n+4,4) \\ Charles R Greathouse IV, Oct 23 2023
  • Sage
    def A348893(n): return (-4)^(4 + n)*binomial(7/2, 4 + n)/2
    print([A348893(n) for n in range(31)])  # Peter Luschny, Nov 04 2021
    

Formula

O.g.f: (140*z^3 - 70*z^2 + 14*z - 1 + (1 - 4*z)^(7/2))/(2*z^4).
E.g.f: 64*exp(2*z)*((-z^3 - 1/2*z^2 - 1/4*z - 3/32)*BesselI(1,2*z) + BesselI(0,2*z)*z*(z^2 + 1/4*z + 3/32))/z^3.
O.g.f. g(z) satisfies z^4*g(z)^2 + (-140*z^3 + 70*z^2 - 14*z + 1)*g(z) + 4096*z^3 - 2268*z^2 + 476*z - 35 = 0;
a(n) = Integral_{x=0..4} x^n*64*(1 - x/4)^(7/2)/(Pi*sqrt(x)). This is the integral representation as the n-th moment of a positive function on [0, 4]. The representation is unique.
Remark: this sequence is not monotonically growing with n, as a(0) > a(1) = a(2) < a(3) < a(4)... .
From Peter Luschny, Nov 03 2021: (Start)
a(n) = 14*A007272(n)/(n + 4).
a(n) ~ 105*4^n*(8*n - 81)/(n^(11/2)*sqrt(Pi)).
a(n) = 4^(n + 4)*hypergeom([9/2, 1/2 - n], [11/2], 1) / (9*Pi). (End)
a(n) = (-4)^(4 + n)*binomial(7/2, 4 + n)/2. - Peter Luschny, Nov 04 2021
From Peter Bala, Mar 10 2023: (Start)
a(n) = 35*binomial(2*n, n) - 56*binomial(2*n, n + 1) + 28*binomial(2*n, n + 2) - 8*binomial(2*n, n + 3) + binomial(2*n, n + 4). Thus this sequence is integral.
7 divides a(n) except when n == 3 (mod 7).
P-recursive: (n + 4)*a(n) = 2*(2*n - 1)*a(n-1) with a(0) = 35.
D-finite: the o.g.f. A(x) satisfies the differential equation (1 - 4*x)*A'(x) + (4 - 2*x)*A(x) - 140 = 0, with A(0) = 35. (End)
From Peter Bala, Mar 11 2023: (Start)
a(n) = Sum_{k = 0..3} (-1)^k*4^(3-k)*binomial(3,k)*Catalan(n+k) = 64*Catalan(n) - 48*Catalan(n+1) + 12*Catalan(n+2) - Catalan(n+3), where Catalan(n) = A000108(n).
a(n) is odd if n = 2^k - 4, k >= 2, otherwise a(n) is even. (End)
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = 13/70 + 4*Pi/(81*sqrt(3)).
Sum_{n>=0} (-1)^(n+1)/a(n) = 72*log(phi)/(3125*sqrt(5)) - 103/43750, where phi is the golden ratio (A001622). (End)