cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A364431 G.f. satisfies A(x) = 1 + x*A(x)*(1 + 2*A(x)^3).

Original entry on oeis.org

1, 3, 27, 351, 5319, 87885, 1535517, 27898101, 521740197, 9977087439, 194191054263, 3834392341779, 76619557946475, 1546479815079321, 31482877148802873, 645689728734541929, 13328555370318744777, 276704344407952939131, 5773556701375333682355
Offset: 0

Views

Author

Seiichi Manyama, Jul 24 2023

Keywords

Crossrefs

Programs

  • Maple
    A364431 := proc(n)
        add(2^k* binomial(n,k) * binomial(n+3*k+1,n) / (n+3*k+1),k=0..n) ;
    end proc:
    seq(A364431(n),n=0..70); # R. J. Mathar, Jul 25 2023
  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(n+3*k+1, n)/(n+3*k+1));

Formula

a(n) = Sum_{k=0..n} 2^k * binomial(n,k) * binomial(n+3*k+1,n) / (n+3*k+1).
D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*a(n) +(-458*n^3 +201*n^2 +401*n -216)*a(n-1) +3*(-1105*n^3 +6549*n^2 -11384*n +5796)*a(n-2) +18*(-262*n^3 +2877*n^2 -10295*n +12006)*a(n-3) +27*(n-4)*(31*n^2 -314*n +735)*a(n-4) -81*(10*n-51) *(n-4)*(n-5)*a(n-5) +243*(n-5)*(n-6) *(n-4)*a(n-6)=0. - R. J. Mathar, Jul 25 2023

A349516 G.f. A(x) satisfies: A(x) = (1 + 3 * x * A(x)^3) / (1 - x).

Original entry on oeis.org

1, 4, 40, 544, 8512, 144448, 2584960, 48026368, 917535232, 17911696384, 355725727744, 7164414312448, 145983839272960, 3003998986682368, 62337412584669184, 1303045468017786880, 27411525832634269696, 579884892273731436544, 12328565505725394583552
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; A[] = 0; Do[A[x] = (1 + 3 x A[x]^3)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = a[n - 1] + 3 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 18}]
    Table[Sum[Binomial[n + 2 k, 3 k] Binomial[3 k, k] 3^k/(2 k + 1), {k, 0, n}], {n, 0, 18}]
  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k,3*k) * binomial(3*k,k) * 3^k / (2*k+1)) \\ Andrew Howroyd, Nov 20 2021

Formula

a(0) = 1; a(n) = a(n-1) + 3 * Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} binomial(n+2*k,3*k) * binomial(3*k,k) * 3^k / (2*k+1).
a(n) ~ sqrt(13 + 7*3^(1/3) + 5*3^(2/3)) / (12 * sqrt(Pi) * n^(3/2) * (1 + 3^(4/3)/2 - 3^(5/3)/2)^n). - Vaclav Kotesovec, Nov 21 2021

A349517 G.f. A(x) satisfies: A(x) = (1 + 4 * x * A(x)^3) / (1 - x).

Original entry on oeis.org

1, 5, 65, 1145, 23185, 509005, 11782465, 283138545, 6996125985, 176633573205, 4536739406465, 118166489152745, 3113854691067185, 82864654201672605, 2223776891616904065, 60113561634017675745, 1635364503704652830785, 44739382956328846263205, 1230059816693141938275265
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; A[] = 0; Do[A[x] = (1 + 4 x A[x]^3)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = a[n - 1] + 4 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 18}]
    Table[Sum[Binomial[n + 2 k, 3 k] Binomial[3 k, k] 4^k/(2 k + 1), {k, 0, n}], {n, 0, 18}]
  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k,3*k) * binomial(3*k,k) * 4^k / (2*k+1)) \\ Andrew Howroyd, Nov 20 2021

Formula

a(0) = 1; a(n) = a(n-1) + 4 * Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} binomial(n+2*k,3*k) * binomial(3*k,k) * 4^k / (2*k+1).
a(n) ~ sqrt((1 + (1 + 1/phi^(2/3) + phi^(2/3))^3/2) / (2*Pi)) / (6 * n^(3/2) * (1 + 3/phi^(1/3) - 3*phi^(1/3))^n), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Nov 21 2021
Showing 1-3 of 3 results.