A349148 Number of unordered n-tuples {x_1, x_2, x_3, ..., x_n} such that Sum_{k=1..n} 1/x_k is an integer and x_k is an integer between 1 and n for 1 <= k <= n.
1, 1, 2, 3, 6, 9, 25, 39, 84, 158, 381, 610, 2175, 3489, 7252, 24744, 54658, 89031, 273604, 443746, 1690517, 5261990, 9399018, 15470605, 58261863, 102574465
Offset: 0
Examples
1/1 + 1/1 = 2 and 2 is an integer. 1/1 + 1/2 = 3/2. 1/2 + 1/2 = 1 and 1 is an integer. So a(2) = 2.
Crossrefs
Cf. A349146.
Programs
-
Python
from math import lcm from itertools import combinations_with_replacement def A349148(n): k = lcm(*range(2,n+1)) dlist = (k//d for d in range(1,n+1)) return sum(1 for d in combinations_with_replacement(dlist,n) if sum(d) % k == 0) # Chai Wah Wu, Nov 09 2021
-
Ruby
def A(n) return 1 if n == 0 cnt = 0 (1..n).to_a.repeated_combination(n){|i| cnt += 1 if (1..n).inject(0){|s, j| s + 1 / i[j - 1].to_r}.denominator == 1 } cnt end def A349148(n) (0..n).map{|i| A(i)} end p A349148(10)
Extensions
a(16)-a(25) from Alois P. Heinz, Nov 08 2021