A349190 Numbers k such that k equals the product of the sum of its first i digits, with i going from 1 to the total number of digits of k.
1, 2, 3, 4, 5, 6, 7, 8, 9, 48, 24192
Offset: 1
Examples
24192 is a term since 24192 = 2*(2+4)*(2+4+1)*(2+4+1+9)*(2+4+1+9+2).
Programs
-
Mathematica
Select[Range[10^5],Times@@Total/@Table[IntegerDigits[#][[;;k]],{k,IntegerLength@#}]==#&] (* Giorgos Kalogeropoulos, Nov 10 2021 *)
-
PARI
isok(k) = {my(d=digits(k)); prod(i=1, #d, sum(j=1, i, d[j])) == k;} \\ Michel Marcus, Nov 10 2021
-
Python
def main(N): # prints all terms <= N for k in range(1,N+1): n1=str(k) n2 = 1 for i in range(1,len(n1)+1): sum1 = 0 for j in range(0,i): sum1 += int(n1[j]) n2 = n2*sum1 if n2 == k: print(k, end=", ")
-
Python
from itertools import islice, accumulate, count from math import prod def A349190gen(): return filter(lambda n:prod(accumulate(int(d) for d in str(n))) == n,count(1)) # generator of terms A349190_list = list(islice(A349190gen(),11)) # Chai Wah Wu, Dec 02 2021
Comments