A349276 Number of unlabeled P-series with n elements.
1, 2, 5, 13, 31, 76, 178, 423, 988, 2312, 5361, 12427, 28626, 65813, 150700, 344232, 783832, 1780650, 4034591, 9121571, 20576349, 46322816, 104079338, 233421517, 522574991, 1167974002, 2606282841, 5806953923, 12919314397, 28702716868, 63682839588, 141111193270
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..3217
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(d* max(1, 2^(d-1)-1), d=numtheory[divisors](j)), j=1..n)/n) end: seq(a(n), n=1..30); # Alois P. Heinz, Jan 05 2022
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j]*Sum[d* Max[1, 2^(d - 1) - 1], {d, Divisors[j]}], {j, 1, n}]/n]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={EulerT(Vec((1 -2*x +2*x^2)/((1-x)*(1-2*x)) + O(x*x^n)))} \\ Andrew Howroyd, Nov 19 2021
Formula
G.f: -1 + exp(Sum_{k>=1} B(x^k)/k) where B(x) = x*(1 - 2*x + 2*x^2)/((1 - x)*(1 - 2*x)). - Andrew Howroyd, Jan 06 2022
Comments