A349330 a(n) = Sum_{d|n} d^c(d), where c is the characteristic function of squares (A010052).
1, 2, 2, 6, 2, 4, 2, 7, 11, 4, 2, 9, 2, 4, 4, 23, 2, 14, 2, 9, 4, 4, 2, 11, 27, 4, 12, 9, 2, 8, 2, 24, 4, 4, 4, 55, 2, 4, 4, 11, 2, 8, 2, 9, 14, 4, 2, 28, 51, 30, 4, 9, 2, 16, 4, 11, 4, 4, 2, 15, 2, 4, 14, 88, 4, 8, 2, 9, 4, 8, 2, 58, 2, 4, 30, 9, 4, 8, 2, 28, 93, 4, 2, 15, 4, 4, 4
Offset: 1
Keywords
Examples
The divisors of 12 are 1, 2, 3, 4, 6, and 12 with squares 1 and 4, so a(12) = 1 + 1 + 1 + 4 + 1 + 1 = 9 (respectively).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
a[n_] := DivisorSum[n, If[IntegerQ @ Sqrt[#], #, 1] &]; Array[a, 100] (* Amiram Eldar, Nov 15 2021 *)
-
PARI
a(n) = sumdiv(n, d, if (issquare(d), d, 1)); \\ Michel Marcus, Nov 15 2021
-
PARI
a(n) = {my(f = factor(n), cf = f, res); cf[,2]\=2; res = numdiv(f)-prod(i = 1, #f~, cf[i, 2]+1); res+=prod(i = 1, #f~, ((f[i,1]^(2*(cf[i,2]+1))-1)/(f[i,1]^2-1))); res } \\ David A. Corneth, Nov 16 2021
Formula
a(p) = 2 iff p is prime. - Wesley Ivan Hurt, Nov 28 2021
Comments