A349334 G.f. A(x) satisfies A(x) = 1 + x * A(x)^7 / (1 - x).
1, 1, 8, 85, 1051, 14197, 203064, 3022909, 46347534, 726894786, 11606936525, 188060979332, 3084087347910, 51094209834068, 853859480938095, 14376597494941454, 243649099741045190, 4153091242153905838, 71152973167920086796, 1224593757045581062444
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..791
Crossrefs
Programs
-
Maple
a:= n-> coeff(series(RootOf(1+x*A^7/(1-x)-A, A), x, n+1), x, n): seq(a(n), n=0..20); # Alois P. Heinz, Nov 15 2021
-
Mathematica
nmax = 19; A[] = 0; Do[A[x] = 1 + x A[x]^7/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Table[Sum[Binomial[n - 1, k - 1] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 19}]
-
PARI
{a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0); A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^7, k)) )); A[n+1]} for(n=0, 30, print1(a(n), ", ")) \\ Vaclav Kotesovec, Nov 23 2024, after Paul D. Hanna
Formula
a(n) = Sum_{k=0..n} binomial(n-1,k-1) * binomial(7*k,k) / (6*k+1).
a(n) ~ 870199^(n + 1/2) / (343 * sqrt(Pi) * n^(3/2) * 2^(6*n + 2) * 3^(6*n + 3/2)). - Vaclav Kotesovec, Nov 15 2021