cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A323910 Dirichlet inverse of the deficiency of n, A033879.

Original entry on oeis.org

1, -1, -2, 0, -4, 4, -6, 0, -1, 6, -10, 2, -12, 8, 10, 0, -16, 1, -18, 2, 14, 12, -22, 4, -3, 14, -2, 2, -28, -16, -30, 0, 22, 18, 26, 4, -36, 20, 26, 4, -40, -24, -42, 2, 4, 24, -46, 8, -5, -1, 34, 2, -52, 0, 42, 4, 38, 30, -58, 2, -60, 32, 6, 0, 50, -40, -66, 2, 46, -40, -70, 12, -72, 38, 2, 2, 62, -48, -78, 8, -4, 42, -82, -2, 66, 44, 58, 4, -88, 2, 74, 2
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2019

Keywords

Crossrefs

Cf. A033879, A323911, A323912, A359549 (parity of terms).
Sequences that appear in the convolution formulas: A002033, A008683, A023900, A055615, A046692, A067824, A074206, A174725, A191161, A327960, A328722, A330575, A345182, A349341, A346246, A349387.

Programs

  • Mathematica
    b[n_] := 2 n - DivisorSigma[1, n];
    a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]];
    Array[a, 100] (* Jean-François Alcover, Feb 17 2020 *)
  • PARI
    up_to = 16384;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA033879(n) = (2*n-sigma(n));
    v323910 = DirInverse(vector(up_to,n,A033879(n)));
    A323910(n) = v323910[n];

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA033879(n/d) * a(d).
From Antti Karttunen, Nov 14 2024: (Start)
Following convolution formulas have been conjectured for this sequence by Sequence Machine, with each one giving the first 10000 terms correctly:
a(n) = Sum_{d|n} A046692(d)*A067824(n/d).
a(n) = Sum_{d|n} A055615(d)*A074206(n/d).
a(n) = Sum_{d|n} A023900(d)*A174725(n/d).
a(n) = Sum_{d|n} A008683(d)*A323912(n/d).
a(n) = Sum_{d|n} A191161(d)*A327960(n/d).
a(n) = Sum_{d|n} A328722(d)*A330575(n/d).
a(n) = Sum_{d|n} A345182(d)*A349341(n/d).
a(n) = Sum_{d|n} A346246(d)*A349387(n/d).
a(n) = Sum_{d|n} A002033(d-1)*A055615(n/d).
(End)

A349353 Dirichlet inverse of A328203.

Original entry on oeis.org

1, -2, -5, 0, -8, 10, -11, 0, 5, 16, -17, 0, -20, 22, 38, 0, -26, -10, -29, 0, 52, 34, -35, 0, 11, 40, 1, 0, -44, -76, -47, 0, 80, 52, 82, 0, -56, 58, 94, 0, -62, -104, -65, 0, -34, 70, -71, 0, 19, -22, 122, 0, -80, -2, 126, 0, 136, 88, -89, 0, -92, 94, -46, 0, 148, -160, -101, 0, 164, -164, -107, 0, -110, 112, -45
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Dirichlet convolution of A349134 with A349341, or equally of A349343 with A349344.

Programs

  • PARI
    up_to = 20000;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA328203(n) = if(n%2,(1/2)*(sigma(n)+(n*numdiv(n))),2*A328203(n/2));
    v349353 = DirInverseCorrect(vector(up_to,n,A328203(n)));
    A349353(n) = v349353[n];

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A328203(n/d) * a(d).
a(n) = A349354(n) - A328203(n).
a(n) = Sum_{d|n} A349134(d) * A349341(n/d).
a(n) = Sum_{d|n} A349343(d) * A349344(n/d).

A349343 Dirichlet inverse of A193356, which is defined as n if n is odd, 0 if n is even.

Original entry on oeis.org

1, 0, -3, 0, -5, 0, -7, 0, 0, 0, -11, 0, -13, 0, 15, 0, -17, 0, -19, 0, 21, 0, -23, 0, 0, 0, 0, 0, -29, 0, -31, 0, 33, 0, 35, 0, -37, 0, 39, 0, -41, 0, -43, 0, 0, 0, -47, 0, 0, 0, 51, 0, -53, 0, 55, 0, 57, 0, -59, 0, -61, 0, 0, 0, 65, 0, -67, 0, 69, 0, -71, 0, -73, 0, 0, 0, 77, 0, -79, 0, 0, 0, -83, 0, 85, 0, 87, 0, -89
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Agrees with A349341 on odd numbers.

Programs

  • Mathematica
    a[1]=1;a[n_]:=-DivisorSum[n,If[OddQ[n/#],n/#,0]*a@#&,#Giorgos Kalogeropoulos, Nov 15 2021 *)
    f[p_, e_] := If[e == 1, -p, 0]; f[2, e_] := 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2023 *)
  • PARI
    A349343(n) = { my(f = factor(n)); prod(i=1, #f~, if((2==f[i,1])||(f[i,2]>1), 0, -f[i,1])); };

Formula

a(2n) = 0, a(2n+1) = A349341(2n+1) for all n >= 1.
Multiplicative with a(p^e) = 0 if p=2 or e>1, otherwise a(p) = -p. - (After Sebastian Karlsson's similar formula for A349341).

A349342 Sum of A026741 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 1, 0, 6, 0, 3, 9, 10, 0, 9, 0, 14, 30, 7, 0, 9, 0, 15, 42, 22, 0, 15, 25, 26, 27, 21, 0, 0, 0, 15, 66, 34, 70, 18, 0, 38, 78, 25, 0, 0, 0, 33, 45, 46, 0, 27, 49, 25, 102, 39, 0, 27, 110, 35, 114, 58, 0, 15, 0, 62, 63, 31, 130, 0, 0, 51, 138, 0, 0, 36, 0, 74, 75, 57, 154, 0, 0, 45, 81, 82, 0, 21, 170, 86
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A026741(n) + A349341(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A026741(d) * A349341(n/d).
Showing 1-4 of 4 results.