cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A328203 Expansion of Sum_{k>=1} k * x^k / (1 - x^(2*k))^2.

Original entry on oeis.org

1, 2, 5, 4, 8, 10, 11, 8, 20, 16, 17, 20, 20, 22, 42, 16, 26, 40, 29, 32, 58, 34, 35, 40, 53, 40, 74, 44, 44, 84, 47, 32, 90, 52, 94, 80, 56, 58, 106, 64, 62, 116, 65, 68, 174, 70, 71, 80, 102, 106, 138, 80, 80, 148, 146, 88, 154, 88, 89, 168, 92, 94, 241, 64, 172
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 07 2019

Keywords

Crossrefs

Programs

  • Magma
    a:=[]; for k in [1..65] do if IsOdd(k) then a[k]:=(k * #Divisors(k) + DivisorSigma(1,k)) / 2; else a[k]:=(k * (#Divisors(k) - #Divisors(k div 2)) + DivisorSigma(1,k) - DivisorSigma(1,k div 2)) / 2;  end if; end for; a; // Marius A. Burtea, Oct 07 2019
    
  • Mathematica
    nmax = 65; CoefficientList[Series[Sum[k x^k/(1 - x^(2 k))^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := DivisorSum[n, (n Mod[#, 2] + Boole[OddQ[n/#]] #)/2 &]; Table[a[n], {n, 1, 65}]
  • PARI
    A328203(n) = if(n%2,(1/2)*(sigma(n)+(n*numdiv(n))),2*A328203(n/2)); \\ Antti Karttunen, Nov 13 2021

Formula

a(n) = (n * d(n) + sigma(n)) / 2 if n odd, (n * (d(n) - d(n/2)) + sigma(n) - sigma(n/2)) / 2 if n even.
a(n) = (n * A001227(n) + A002131(n)) / 2.
a(2*n) = 2 * a(n).
From Antti Karttunen, Nov 13 2021: (Start)
The following two convolutions were found by Jon Maiga's Sequence Machine search algorithm. Both are easy to prove:
a(n) = Sum_{d|n} A003602(d) * A026741(n/d).
a(n) = Sum_{d|n} A109168(d) * A193356(n/d), where A109168(d) = A140472(d) = (d+A006519(d))/2.
(End)

A349344 Dirichlet inverse of A109168, where A109168(n) = (n+A006519(n))/2, and A006519 is the highest power of 2 dividing n.

Original entry on oeis.org

1, -2, -2, 0, -3, 4, -4, 0, -1, 6, -6, 0, -7, 8, 4, 0, -9, 2, -10, 0, 5, 12, -12, 0, -4, 14, -2, 0, -15, -8, -16, 0, 7, 18, 6, 0, -19, 20, 8, 0, -21, -10, -22, 0, 3, 24, -24, 0, -9, 8, 10, 0, -27, 4, 8, 0, 11, 30, -30, 0, -31, 32, 4, 0, 9, -14, -34, 0, 13, -12, -36, 0, -37, 38, 8, 0, 9, -16, -40, 0, -4, 42, -42, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 20000;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA109168(n) = ((n+bitand(n, -n))\2); \\ From A109168 by M. F. Hasler, Oct 19 2019 (Cf. A140472).
    v349344 = DirInverseCorrect(vector(up_to,n,A109168(n)));
    A349344(n) = v349344[n];

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A109168(n/d) * a(d).
a(n) = A349345(n) - A109168(n).

A349341 Dirichlet inverse of A026741, which is defined as n if n is odd, n/2 if n is even.

Original entry on oeis.org

1, -1, -3, -1, -5, 3, -7, -1, 0, 5, -11, 3, -13, 7, 15, -1, -17, 0, -19, 5, 21, 11, -23, 3, 0, 13, 0, 7, -29, -15, -31, -1, 33, 17, 35, 0, -37, 19, 39, 5, -41, -21, -43, 11, 0, 23, -47, 3, 0, 0, 51, 13, -53, 0, 55, 7, 57, 29, -59, -15, -61, 31, 0, -1, 65, -33, -67, 17, 69, -35, -71, 0, -73, 37, 0, 19, 77, -39, -79
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Agrees with A349343 on odd numbers.

Programs

  • Mathematica
    a[1]=1;a[n_]:=-DivisorSum[n,If[OddQ[n/#],n/#,n/(2#)]*a@#&,#Giorgos Kalogeropoulos, Nov 15 2021 *)
    f[p_, e_] := If[e == 1, -p, 0]; f[2, e_] := -1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2023 *)
  • PARI
    A349341(n) = { my(f = factor(n)); prod(i=1, #f~, if(2==f[i,1], -1, if(1==f[i,2], -f[i,1], 0))); };
    
  • Python
    from sympy import prevprime, factorint, prod
    def f(p, e):
        return -1 if p == 2 else 0 if e > 1 else -p
    def a(n):
        return prod(f(p, e) for p, e in factorint(n).items()) # Sebastian Karlsson, Nov 15 2021

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A026741(n/d) * a(d).
a(n) = A349342(n) - A026741(n).
a(2n+1) = A349343(2n+1) for all n >= 1.
Multiplicative with a(2^e) = -1, a(p) = -p and a(p^e) = 0 if e > 1. - Sebastian Karlsson, Nov 15 2021

A349343 Dirichlet inverse of A193356, which is defined as n if n is odd, 0 if n is even.

Original entry on oeis.org

1, 0, -3, 0, -5, 0, -7, 0, 0, 0, -11, 0, -13, 0, 15, 0, -17, 0, -19, 0, 21, 0, -23, 0, 0, 0, 0, 0, -29, 0, -31, 0, 33, 0, 35, 0, -37, 0, 39, 0, -41, 0, -43, 0, 0, 0, -47, 0, 0, 0, 51, 0, -53, 0, 55, 0, 57, 0, -59, 0, -61, 0, 0, 0, 65, 0, -67, 0, 69, 0, -71, 0, -73, 0, 0, 0, 77, 0, -79, 0, 0, 0, -83, 0, 85, 0, 87, 0, -89
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Agrees with A349341 on odd numbers.

Programs

  • Mathematica
    a[1]=1;a[n_]:=-DivisorSum[n,If[OddQ[n/#],n/#,0]*a@#&,#Giorgos Kalogeropoulos, Nov 15 2021 *)
    f[p_, e_] := If[e == 1, -p, 0]; f[2, e_] := 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2023 *)
  • PARI
    A349343(n) = { my(f = factor(n)); prod(i=1, #f~, if((2==f[i,1])||(f[i,2]>1), 0, -f[i,1])); };

Formula

a(2n) = 0, a(2n+1) = A349341(2n+1) for all n >= 1.
Multiplicative with a(p^e) = 0 if p=2 or e>1, otherwise a(p) = -p. - (After Sebastian Karlsson's similar formula for A349341).

A349354 Sum of A328203 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 4, 0, 20, 0, 8, 25, 32, 0, 20, 0, 44, 80, 16, 0, 30, 0, 32, 110, 68, 0, 40, 64, 80, 75, 44, 0, 8, 0, 32, 170, 104, 176, 80, 0, 116, 200, 64, 0, 12, 0, 68, 140, 140, 0, 80, 121, 84, 260, 80, 0, 146, 272, 88, 290, 176, 0, 168, 0, 188, 195, 64, 320, 20, 0, 104, 350, 24, 0, 160, 0, 224, 242, 116, 374, 24, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 20000;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA328203(n) = if(n%2,(1/2)*(sigma(n)+(n*numdiv(n))),2*A328203(n/2));
    v349353 = DirInverseCorrect(vector(up_to,n,A328203(n)));
    A349353(n) = v349353[n];
    A349354(n) = (A328203(n)+A349353(n));

Formula

a(n) = A328203(n) + A349353(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A328203(d) * A349353(n/d).
Showing 1-5 of 5 results.