cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349571 Dirichlet convolution of A048673 with A055615 (Dirichlet inverse of n).

Original entry on oeis.org

1, 0, 0, 1, -1, 2, -1, 4, 4, 3, -4, 4, -4, 5, 6, 13, -7, 6, -7, 5, 10, 6, -8, 10, 5, 8, 24, 9, -13, -2, -12, 40, 12, 9, 16, 16, -16, 11, 16, 11, -19, -2, -19, 8, 14, 14, -20, 28, 19, 9, 18, 12, -23, 26, 22, 21, 22, 15, -28, 2, -27, 18, 26, 121, 28, -8, -31, 11, 28, -8, -34, 46, -33, 20, 18, 15, 34, -8, -37, 29, 124
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2021

Keywords

Comments

Also Dirichlet convolution of A349385 with A349387.

Crossrefs

Cf. A048673, A055615, A349385, A349387, A349572 (Dirichlet inverse).
Cf. also A349398, A349573.

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := (1 + Times @@ f @@@ FactorInteger[n])/2; a[n_] := DivisorSum[n, # * MoebiusMu[#] * s[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 23 2021 *)
  • PARI
    A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1/2)*(1+factorback(f)); };
    A055615(n) = (n*moebius(n));
    A349571(n) = sumdiv(n,d,A048673(n/d)*A055615(d));

Formula

a(n) = Sum_{d|n} A048673(n/d) * A055615(d).
a(n) = Sum_{d|n} A349385(n/d) * A349387(d).