A349581
G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x)^2 * A(x)^4.
Original entry on oeis.org
1, 3, 12, 66, 460, 3681, 31848, 289176, 2714044, 26103468, 255876048, 2546717454, 25666830724, 261407935366, 2686191839232, 27815564456544, 289960011573212, 3040424427011492, 32046741183678288, 339345854532800136, 3608307717155678256, 38511520730570169033
Offset: 0
-
nmax = 21; A[] = 0; Do[A[x] = 1/(1 - 2 x) + x (1 - 2 x)^2 A[x]^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n, k] Binomial[4 k, k] 2^(n - k)/(3 k + 1), {k, 0, n}], {n, 0, 21}]
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(4*k,k)*2^(n-k)/(3*k+1)); \\ Michel Marcus, Nov 23 2021
A349584
G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x)^4 * A(x)^6.
Original entry on oeis.org
1, 3, 14, 107, 1106, 13173, 168820, 2264298, 31356818, 444803666, 6429510234, 94356870748, 1402149248128, 21055387206719, 319007902203196, 4870481885025752, 74858763620576738, 1157339247553310574, 17985974981514604660, 280813589679135551721
Offset: 0
-
nmax = 19; A[] = 0; Do[A[x] = 1/(1 - 2 x) + x (1 - 2 x)^4 A[x]^6 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n, k] Binomial[6 k, k] 2^(n - k)/(5 k + 1), {k, 0, n}], {n, 0, 19}]
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(6*k,k)*2^(n-k)/(5*k+1)); \\ Michel Marcus, Nov 23 2021
A349590
G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x)^5 * A(x)^7.
Original entry on oeis.org
1, 3, 15, 132, 1595, 22134, 329718, 5136028, 82579819, 1359902823, 22818697128, 388728802702, 6705324823466, 116878939752376, 2055505806198352, 36427660285955808, 649894104351874395, 11662729497015257677, 210383830525447606431, 3812719304673511150854
Offset: 0
-
nmax = 19; A[] = 0; Do[A[x] = 1/(1 - 2 x) + x (1 - 2 x)^5 A[x]^7 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n, k] Binomial[7 k, k] 2^(n - k)/(6 k + 1), {k, 0, n}], {n, 0, 19}]
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(7*k,k)*2^(n-k)/(6*k+1)); \\ Michel Marcus, Nov 23 2021
A349591
G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x)^6 * A(x)^8.
Original entry on oeis.org
1, 3, 16, 160, 2216, 35110, 596016, 10573748, 193586424, 3629709697, 69342483276, 1344897261828, 26411276859800, 524117511080056, 10493756451964088, 211719733855698808, 4300202981875132408, 87854045612854431128, 1804215079309443709632
Offset: 0
-
nmax = 18; A[] = 0; Do[A[x] = 1/(1 - 2 x) + x (1 - 2 x)^6 A[x]^8 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n, k] Binomial[8 k, k] 2^(n - k)/(7 k + 1), {k, 0, n}], {n, 0, 18}]
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(8*k,k)*2^(n-k)/(7*k+1)); \\ Michel Marcus, Nov 23 2021
Showing 1-4 of 4 results.
Comments