A349643 Smallest prime p = prime(k) such that the n-th difference of (prime(k), ..., prime(k+n)) is zero.
3, 17, 347, 41, 211, 271, 23, 191, 33151, 541, 70891, 152681, 856637, 158047, 2010581, 24239, 7069423, 15149419, 9472693, 347957, 479691493, 994339579, 132480637, 4462552643, 1342424483, 4757283367, 20674291411, 21170786093, 9941224877, 68864319317, 8660066477
Offset: 2
Keywords
Examples
The first six consecutive primes for which the fifth difference is 0 are (41, 43, 47, 53, 59, 61), so a(5) = 41. The successive differences are (2, 4, 6, 6, 2), (2, 2, 0, -4), (0, -2, -4), (-2, -2), and (0).
Programs
-
Mathematica
With[{prs=Prime[Range[10^6]]},Table[SelectFirst[Partition[prs,n+1,1],Differences[#,n]=={0}&][[1]],{n,2,21}]] (* The program generates the first 20 terms of the sequence. *) (* Harvey P. Dale, Aug 10 2024 *)
-
Python
from math import comb from sympy import nextprime def A349643(n): plist, clist = [2], [1] for i in range(1,n+1): plist.append(nextprime(plist[-1])) clist.append((-1)**i*comb(n,i)) while True: if sum(clist[i]*plist[i] for i in range(n+1)) == 0: return plist[0] plist = plist[1:]+[nextprime(plist[-1])] # Chai Wah Wu, Nov 25 2021
Formula
Sum_{j=0..n} (-1)^j*binomial(n,j)*prime(k+j) = 0, where prime(k) = a(n).
Comments