A376678
Position of first zero in the n-th differences of the primes, or 0 if it does not appear.
Original entry on oeis.org
0, 0, 2, 7, 69, 13, 47, 58, 9, 43, 3553, 100, 7019, 14082, 68097, 14526, 149677, 2697, 481054, 979719, 631894, 29811, 25340978, 50574254, 7510843, 210829337, 67248861, 224076286, 910615647, 931510269, 452499644, 2880203722, 396680865, 57954439970, 77572822440, 35394938648
Offset: 0
The third differences of the primes begin:
-1, 2, -4, 4, -4, 4, 0, -6, 8, ...
so a(3) = 7.
This is the position at which 0 first appears in row n of
A095195.
For composite instead of prime we have
A377037.
For squarefree instead of prime we have
A377042, nonsquarefree
A377050.
For prime-power instead of prime we have
A377055.
Cf.
A000720,
A007442,
A030016,
A065890,
A084758,
A140119,
A258025,
A258026,
A333254,
A349643,
A376681,
A376682,
A376683.
-
nn=100000;
u=Table[Differences[Select[Range[nn],PrimeQ],k],{k,2,16}];
mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]
A349644
Array read by antidiagonals, n >= 2, m >= 0: T(n,m) is the smallest prime p = prime(k) such that all n-th differences of (prime(k), ..., prime(k+n+m)) are zero.
Original entry on oeis.org
3, 251, 17, 9843019, 347, 347, 121174811, 2903, 2903, 41
Offset: 2
Array begins:
n\m| 0 1 2 3 4
---+------------------------------------------------
2 | 3 251 9843019 121174811 ?
3 | 17 347 2903 15373 128981
4 | 347 2903 15373 128981 19641263
5 | 41 8081 128981 19641263 245333213
6 | 211 128981 19641263 245333213 245333213
7 | 271 386471 81028373 245333213 27797667517
8 | 23 2022971 245333213 27797667517 ?
9 | 191 7564091 10246420463 ? ?
-
from sympy import nextprime
def A349644(n,m):
d = [float('inf')]*(n-1)
p = [0]*(n+m)+[2]
c = 0
while 1:
del p[0]
p.append(nextprime(p[-1]))
d.insert(0,p[-1]-p[-2])
for i in range(1,n):
d[i] = d[i-1]-d[i]
if d.pop() == 0:
if c == m: return p[0]
c += 1
else:
c = 0
A350002
a(n) is the smallest lucky number L(k) such that the n-th difference of (L(k), ..., L(k+n)) is zero, where L is A000959; a(n) = 0 if no such number exists.
Original entry on oeis.org
37, 31, 87, 31, 517, 1797, 1797, 267, 483, 5649, 23815, 198223, 985921, 508401, 3720765, 1936245, 8302279, 16713091, 9857049, 16756749, 8904175
Offset: 2
The first six consecutive lucky numbers for which the fifth difference is 0 are (31, 33, 37, 43, 49, 51), so a(5) = 31. The successive differences are (2, 4, 6, 6, 2), (2, 2, 0, -4), (0, -2, -4), (-2, -2), and (0).
A350006
a(n) is the smallest ludic number L(k) such that the n-th difference of (L(k), ..., L(k+n)) is zero, where L is A003309; a(n) = 0 if no such number exists.
Original entry on oeis.org
1, 11, 41, 47, 91, 1361, 4261, 481, 46067, 5027, 31499, 888893, 126205, 36191, 7676353, 26794127, 206527, 2560375, 7716073
Offset: 2
The first six consecutive ludic numbers for which the fifth difference is 0 are (47, 53, 61, 67, 71, 77), so a(5) = 47. The successive differences are (6, 8, 6, 4, 6), (2, -2, -2, 2), (-4, 0, 4), (4, 4), and (0).
A350201
a(n) is the smallest prime p such that the Hankel matrix of the 2*n-1 consecutive primes starting at p is singular; a(n) = 0 if no such p exists.
Original entry on oeis.org
23, 2, 25771, 74159, 245333129, 245333113
Offset: 3
Example
| | | vector in the kernel
n | a(n) | primepi(a(n)) | of the Hankel matrix
--+-----------+---------------+------------------------------
3 | 23 | 9 | (7, 3, -8)
4 | 2 | 1 | (6, -3, -2, 1)
5 | 25771 | 2838 | (1, -2, 2, -2, 1)
6 | 74159 | 7315 | (1, -2, 1, 1, -2, 1)
7 | 245333129 | 13437898 | (0, 0, 0, 1, -3, 3, -1)
8 | 245333113 | 13437897 | (0, 0, 0, 0, 1, -3, 3, -1)
For n = 3, the relation 7*prime(j) + 3*prime(j+1) - 8*prime(j+2) = 0 holds for 9 <= j <= 11, i.e.,
7*23 + 3*29 - 8*31 = 0,
7*29 + 3*31 - 8*37 = 0,
7*31 + 3*37 - 8*41 = 0.
The ten prime gaps following prime(13437901) = 245333213 are 20, 18, 16, 14, 12, 10, 8, 6, 4, 2 (see A349642). This gives both a(7) = prime(13437898) and a(8) = prime(13437897).
-
from sympy import prime,nextprime,Matrix
def A350201(n):
p = [prime(j) for j in range(1,2*n)]
while Matrix(n,n,lambda i,j:p[i+j]).det():
del p[0]
p.append(nextprime(p[-1]))
return p[0]
Showing 1-5 of 5 results.
Comments