A349643
Smallest prime p = prime(k) such that the n-th difference of (prime(k), ..., prime(k+n)) is zero.
Original entry on oeis.org
3, 17, 347, 41, 211, 271, 23, 191, 33151, 541, 70891, 152681, 856637, 158047, 2010581, 24239, 7069423, 15149419, 9472693, 347957, 479691493, 994339579, 132480637, 4462552643, 1342424483, 4757283367, 20674291411, 21170786093, 9941224877, 68864319317, 8660066477
Offset: 2
The first six consecutive primes for which the fifth difference is 0 are (41, 43, 47, 53, 59, 61), so a(5) = 41. The successive differences are (2, 4, 6, 6, 2), (2, 2, 0, -4), (0, -2, -4), (-2, -2), and (0).
-
With[{prs=Prime[Range[10^6]]},Table[SelectFirst[Partition[prs,n+1,1],Differences[#,n]=={0}&][[1]],{n,2,21}]] (* The program generates the first 20 terms of the sequence. *) (* Harvey P. Dale, Aug 10 2024 *)
-
from math import comb
from sympy import nextprime
def A349643(n):
plist, clist = [2], [1]
for i in range(1,n+1):
plist.append(nextprime(plist[-1]))
clist.append((-1)**i*comb(n,i))
while True:
if sum(clist[i]*plist[i] for i in range(n+1)) == 0: return plist[0]
plist = plist[1:]+[nextprime(plist[-1])] # Chai Wah Wu, Nov 25 2021
A350007
Array read by antidiagonals, n >= 2, m >= 0: T(n,m) is the smallest ludic number L(k) such that all n-th differences of (L(k), ..., L(k+n+m)) are zero, where L is A003309; T(n,m) = 0 if no such number exists.
Original entry on oeis.org
1, 71, 11, 6392047, 41, 41
Offset: 2
Array begins:
n\m| 0 1 2 3 4 5
---+---------------------------------------------------
2 | 1 71 6392047 ? ? ?
3 | 11 41 1111 2176387 61077491 93320837
4 | 41 1111 545977 27244691 93320837 ?
5 | 47 91 27244691 93320837 ? ?
6 | 91 23309 93320837 ? ? ?
7 | 1361 9899189 ? ? ? ?
8 | 4261 26233 ? ? ? ?
9 | 481 7110347 ? ? ? ?
10 | 46067 79241951 ? ? ? ?
For n = 5 and m = 1, the first seven (n+m+1) consecutive ludic numbers for which all fifth (n-th) differences are 0 are (91, 97, 107, 115, 119, 121, 127), so T(5,1) = 91. The successive differences are (6, 10, 8, 4, 2, 6), (4, -2, -4, -2, 4), (-6, -2, 2, 6), (4, 4, 4), and (0, 0).
A349642
Smallest prime such that the next n prime gaps are in arithmetic progression.
Original entry on oeis.org
2, 2, 2, 17, 347, 2903, 15373, 128981, 19641263, 245333213, 245333213, 27797667517, 68439250465123, 68439250465123
Offset: 0
The three prime gaps following the prime 17 are 2, 4, and 6, which are in arithmetic progression. This is not true for any smaller prime, so a(3) = 17.
The eight prime gaps following the prime 19641263 are 20, 18, 16, 14, 12, 10, 8, and 6, which are in arithmetic progression. This is not true for any smaller prime, so a(8) = 19641263.
A350003
Array read by antidiagonals, n >= 2, m >= 0: T(n,m) is the smallest lucky number L(k) such that all n-th differences of (L(k), ..., L(k+n+m)) are zero, where L is A000959; T(n,m) = 0 if no such number exists.
Original entry on oeis.org
37, 87, 31, 87, 87, 87, 72979, 17781, 1263, 31
Offset: 2
Array begins:
n\m| 0 1 2 3
---+-----------------------------------
2 | 37 87 87 72979
3 | 31 87 17781 196089
4 | 87 1263 196089 63955483
5 | 31 3687 17622975 ?
6 | 517 390015 ? ?
7 | 1797 1797 ? ?
8 | 1797 2432367 ? ?
9 | 267 9157647 ? ?
10 | 483 1683501 ? ?
For n = 4 and m = 1, the first six (n+m+1) consecutive lucky numbers for which all fourth (n-th) differences are 0 are (1263, 1275, 1281, 1285, 1291, 1303), so T(4,1) = 1263. The successive differences are (12, 6, 4, 6, 12), (-6, -2, ,2, 6), (4, 4, 4), and (0, 0).
Showing 1-4 of 4 results.
Comments