A349644 Array read by antidiagonals, n >= 2, m >= 0: T(n,m) is the smallest prime p = prime(k) such that all n-th differences of (prime(k), ..., prime(k+n+m)) are zero.
3, 251, 17, 9843019, 347, 347, 121174811, 2903, 2903, 41
Offset: 2
Examples
Array begins: n\m| 0 1 2 3 4 ---+------------------------------------------------ 2 | 3 251 9843019 121174811 ? 3 | 17 347 2903 15373 128981 4 | 347 2903 15373 128981 19641263 5 | 41 8081 128981 19641263 245333213 6 | 211 128981 19641263 245333213 245333213 7 | 271 386471 81028373 245333213 27797667517 8 | 23 2022971 245333213 27797667517 ? 9 | 191 7564091 10246420463 ? ?
Programs
-
Python
from sympy import nextprime def A349644(n,m): d = [float('inf')]*(n-1) p = [0]*(n+m)+[2] c = 0 while 1: del p[0] p.append(nextprime(p[-1])) d.insert(0,p[-1]-p[-2]) for i in range(1,n): d[i] = d[i-1]-d[i] if d.pop() == 0: if c == m: return p[0] c += 1 else: c = 0
Formula
T(n,m) <= T(n-1,m+1).
T(n,m) <= T(n, m+1).
Sum_{j=0..n} (-1)^j*binomial(n,j)*prime(k+i+j) = 0 for 0 <= i <= m, where prime(k) = T(n,m).
Comments