A349645 Triangular array read by rows: T(n,k) is the number of square n-permutations possessing exactly k cycles; n >= 0, 0 <= k <= n.
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 11, 0, 1, 0, 24, 0, 35, 0, 1, 0, 0, 184, 0, 85, 0, 1, 0, 720, 0, 994, 0, 175, 0, 1, 0, 0, 9708, 0, 4249, 0, 322, 0, 1, 0, 40320, 0, 72764, 0, 14889, 0, 546, 0, 1, 0, 0, 648576, 0, 402380, 0, 44373, 0, 870, 0, 1
Offset: 0
Examples
The three square 3-permutations are (1, 2, 3) with three cycles (fixed points) and (3, 1, 2) & (2, 3, 1), each with one cycle. Among the twelve square 4-permutations are {1, 4, 2, 3} & {1, 3, 4, 2} and {3, 4, 1, 2} & {4, 3, 2, 1}, all with two cycles but differing types. Triangle begins: [0] 1; [1] 0, 1; [2] 0, 0, 1; [3] 0, 2, 0, 1; [4] 0, 0, 11, 0, 1; [5] 0, 24, 0, 35, 0, 1; [6] 0, 0, 184, 0, 85, 0, 1; [7] 0, 720, 0, 994, 0, 175, 0, 1; [8] 0, 0, 9708, 0, 4249, 0, 322, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
Crossrefs
Programs
-
Maple
with(combinat): b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(`if`(irem(i, 2)=0 and irem(j, 2)=1, 0, (i-1)!^j* multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1))*x^j, j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)): seq(T(n), n=0..12); # Alois P. Heinz, Nov 23 2021
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[If[Mod[i, 2] == 0 && Mod[j, 2] == 1, 0, (i-1)!^j*multinomial[n, Join[{n-i*j}, Table[i, {j}]]]/j!*b[n-i*j, i-1]]*x^j, {j, 0, n/i}]]]]; T[n_] := With[{p = b[n, n]}, Table[Coefficient[p, x, i], {i, 0, n}]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
Comments