A349693 Dirichlet convolution of the ruler function (A001511) with itself.
1, 4, 2, 10, 2, 8, 2, 20, 3, 8, 2, 20, 2, 8, 4, 35, 2, 12, 2, 20, 4, 8, 2, 40, 3, 8, 4, 20, 2, 16, 2, 56, 4, 8, 4, 30, 2, 8, 4, 40, 2, 16, 2, 20, 6, 8, 2, 70, 3, 12, 4, 20, 2, 16, 4, 40, 4, 8, 2, 40, 2, 8, 6, 84, 4, 16, 2, 20, 4, 16, 2, 60, 2, 8, 6, 20, 4, 16, 2, 70
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Maple
a:= n-> (f-> add(f(d)*f(n/d), d=numtheory[divisors](n)))(k-> padic[ordp](2*k, 2)): seq(a(n), n=1..80); # Alois P. Heinz, Nov 25 2021
-
Mathematica
Table[Sum[IntegerExponent[2 d, 2] IntegerExponent[2 n/d, 2], {d, Divisors[n]}], {n, 1, 80}] f[p_, e_] := If[p == 2, Binomial[e + 3, 3], e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 80] (* Amiram Eldar, Nov 25 2021 *)
-
PARI
A001511(n) = (1+valuation(n,2)); A349693(n) = sumdiv(n,d,A001511(n/d)*A001511(d)); \\ Antti Karttunen, Nov 25 2021
-
Python
from sympy import divisor_count def A349693(n): return divisor_count(n)*(m:=(n&-n).bit_length()+1)*(m+1)//6 # Chai Wah Wu, Jul 13 2022
Formula
Dirichlet g.f.: zeta(s)^2 * 4^s / (2^s-1)^2.
Multiplicative with a(p^e) = binomial(e+3,3) if p = 2 and e+1 otherwise. - Amiram Eldar, Nov 25 2021
Sum_{k=1..n} a(k) ~ 4*n*(log(n) - 1 + 2*gamma - 2*log(2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Nov 26 2021
From Ridouane Oudra, Jul 23 2025: (Start)
a(n) = Sum_{i=0..A007814(n)} (i+1)*tau(n/2^i).
a(n) = Sum_{d|n} A115364(d).
a(2*n+1) = tau(2*n+1).
a(2^k*(2*n+1)) = binomial(k+3, 3)*tau(2*n+1), for k, n >= 0. (End)
Comments