A349711 a(n) = Sum_{d|n} sopfr(d) * sopfr(n/d).
0, 0, 0, 4, 0, 12, 0, 16, 9, 20, 0, 44, 0, 28, 30, 40, 0, 54, 0, 68, 42, 44, 0, 104, 25, 52, 36, 92, 0, 124, 0, 80, 66, 68, 70, 147, 0, 76, 78, 152, 0, 164, 0, 140, 108, 92, 0, 200, 49, 110, 102, 164, 0, 144, 110, 200, 114, 116, 0, 298, 0, 124, 144, 140, 130, 244, 0, 212, 138, 236, 0, 300, 0, 148, 140
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Maple
b:= proc(n) option remember; add(i[1]*i[2], i=ifactors(n)[2]) end: a:= n-> add(b(d)*b(n/d), d=numtheory[divisors](n)): seq(a(n), n=1..75); # Alois P. Heinz, Nov 26 2021
-
Mathematica
sopfr[1] = 0; sopfr[n_] := Plus @@ Times @@@ FactorInteger@n; a[n_] := Sum[sopfr[d] sopfr[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 75}]
-
PARI
sopfr(n) = (n=factor(n))[, 1]~*n[, 2]; \\ A001414 a(n) = sumdiv(n, d, sopfr(d)*sopfr(n/d)); \\ Michel Marcus, Nov 26 2021
-
Python
from itertools import product from sympy import factorint def A349711(n): f = factorint(n) plist, m = list(f.keys()), sum(f[p]*p for p in f) return sum((lambda x: x*(m-x))(sum(d[i]*p for i, p in enumerate(plist))) for d in product(*(list(range(f[p]+1)) for p in plist))) # Chai Wah Wu, Nov 27 2021
Formula
Dirichlet g.f.: ( zeta(s) * Sum_{p prime} p/(p^s-1) )^2.
a(p^k) = (k^3-k)*p^2/6 = A000292(k-1)*p^2 for p prime. - Chai Wah Wu, Nov 28 2021
Comments