cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349711 a(n) = Sum_{d|n} sopfr(d) * sopfr(n/d).

Original entry on oeis.org

0, 0, 0, 4, 0, 12, 0, 16, 9, 20, 0, 44, 0, 28, 30, 40, 0, 54, 0, 68, 42, 44, 0, 104, 25, 52, 36, 92, 0, 124, 0, 80, 66, 68, 70, 147, 0, 76, 78, 152, 0, 164, 0, 140, 108, 92, 0, 200, 49, 110, 102, 164, 0, 144, 110, 200, 114, 116, 0, 298, 0, 124, 144, 140, 130, 244, 0, 212, 138, 236, 0, 300, 0, 148, 140
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2021

Keywords

Comments

Dirichlet convolution of A001414 with itself.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(i[1]*i[2], i=ifactors(n)[2]) end:
    a:= n-> add(b(d)*b(n/d), d=numtheory[divisors](n)):
    seq(a(n), n=1..75);  # Alois P. Heinz, Nov 26 2021
  • Mathematica
    sopfr[1] = 0; sopfr[n_] := Plus @@ Times @@@ FactorInteger@n; a[n_] := Sum[sopfr[d] sopfr[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 75}]
  • PARI
    sopfr(n) = (n=factor(n))[, 1]~*n[, 2]; \\ A001414
    a(n) = sumdiv(n, d, sopfr(d)*sopfr(n/d)); \\ Michel Marcus, Nov 26 2021
    
  • Python
    from itertools import product
    from sympy import factorint
    def A349711(n):
        f = factorint(n)
        plist, m = list(f.keys()), sum(f[p]*p for p in f)
        return sum((lambda x: x*(m-x))(sum(d[i]*p for i, p in enumerate(plist))) for d in product(*(list(range(f[p]+1)) for p in plist))) # Chai Wah Wu, Nov 27 2021

Formula

Dirichlet g.f.: ( zeta(s) * Sum_{p prime} p/(p^s-1) )^2.
a(p^k) = (k^3-k)*p^2/6 = A000292(k-1)*p^2 for p prime. - Chai Wah Wu, Nov 28 2021