A349766 Numbers of the form 2*t^2-4 when t > 1 is a term in A001541.
14, 574, 19598, 665854, 22619534, 768398398, 26102926094, 886731088894, 30122754096398, 1023286908188734, 34761632124320654, 1180872205318713598, 40114893348711941774, 1362725501650887306814, 46292552162781456489998, 1572584048032918633353214, 53421565080956452077519374
Offset: 1
Keywords
Examples
A001541(1) = 3, then for t = 3, 2*t^2-4 = 14; also for k = 14, 14$ / 8! = 1309248519599593818685440000000^2 and 14$ / 9! = 436416173199864606228480000000^2. Hence, 14 is a term.
Links
- Rick Mabry and Laura McCormick, Square products of punctured sequences of factorials, Gaz. Aust. Math. Soc., 2009, pages 346-352.
- Index to sequences related to Olympiads.
- Index entries for linear recurrences with constant coefficients, signature (35, -35, 1).
Crossrefs
Programs
-
Maple
with(orthopoly): sequence = (2*T(n,3)^2-4, n=1..20);
-
Mathematica
(2*#^2 - 4) & /@ LinearRecurrence[{6, -1}, {3, 17}, 17] (* Amiram Eldar, Dec 04 2021 *) LinearRecurrence[{35, -35, 1},{14, 574, 19598},17] (* Ray Chandler, Mar 01 2024 *)
-
PARI
a(n) = my(t=subst(polchebyshev(n), 'x, 3)); 2*t^2-4; \\ Michel Marcus, Dec 04 2021
Formula
a(n) = 2*(cosh(2*n*arcsinh(1)))^2 - 4.
a(n) = 16*A001110(n) - 2. - Hugo Pfoertner, Dec 04 2021
Comments